Log in

Sympathetic Neural Mechanisms in Human Blood Pressure Regulation

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Sympathetic neural function is essential to human blood pressure regulation, and overactivity of sympathetic nerves may have an important role in the development of hypertension and related cardiovascular disorders. Importantly, there is extensive interindividual variability in sympathetic vasoconstrictor nerve activity, even among healthy, young, normotensive people. Therefore, the relevance of each person’s level of sympathetic nerve activity for his or her blood pressure must be evaluated in the context of other factors contributing to the overall level of blood pressure, including cardiac output and vascular adrenergic responsiveness. We include evidence showing that the balance of factors contributing to normal blood pressure in young people is influenced by sex. Hypertension itself can be multifactorial, but it is often associated with elevated sympathetic nerve activity, which can be reversed by some pharmacologic antihypertensive treatments. Although much work remains to be done in this area, an appropriate recognition of the complexity of integrated physiological regulation and of the importance of interindividual variability will be key factors in moving forward to even better understanding and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20:1675–88.

    Article  PubMed  CAS  Google Scholar 

  2. Benarroch EE. The arterial baroreflex: functional organization and involvement in neurologic disease. Neurology. 2008;71:1733–8.

    Article  PubMed  Google Scholar 

  3. Esler M, Lambert E, Schlaich M. Point: Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol. 2010;109:1996–8.

    Article  PubMed  Google Scholar 

  4. Jones PP, Shapiro LF, Keisling GA, et al. Altered autonomic support of arterial blood pressure with age in healthy men. Circulation. 2001;104:2424–9.

    Article  PubMed  CAS  Google Scholar 

  5. Osborn JW, Jacob F, Guzman P. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am J Physiol Regul Integr Comp Physiol. 2005;288:R846–55.

    Article  PubMed  CAS  Google Scholar 

  6. Christou DD, Jones PP, Jordan J, et al. Women have lower tonic autonomic support of arterial blood pressure and less effective baroreflex buffering than men. Circulation. 2005;111:494–8.

    Article  PubMed  Google Scholar 

  7. Lloyd-Jones DM, Evans JC, Levy D. Hypertension in adults across the age spectrum: current outcomes and control in the community. JAMA. 2005;294:466–72.

    Article  PubMed  CAS  Google Scholar 

  8. Diedrich A, Jordan J, Tank J, et al. The sympathetic nervous system in hypertension: assessment by blood pressure variability and ganglionic blockade. J Hypertens. 2003;21:1677–86.

    Article  PubMed  CAS  Google Scholar 

  9. Vallbo AB, Hagbarth KE, Wallin BG. Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J Appl Physiol. 2004;96:1262–9.

    Article  PubMed  Google Scholar 

  10. Rudas L, Crossman AA, Morillo CA, et al. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am J Physiol. 1999;276(5 Pt 2):H1691–8.

    PubMed  CAS  Google Scholar 

  11. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 1969;24:109–21.

    PubMed  CAS  Google Scholar 

  12. Ebert TJ. Differential effects of nitrous oxide on baroreflex control of heart rate and peripheral sympathetic nerve activity in humans. Anesthesiology. 1990;72:16–22.

    Article  PubMed  CAS  Google Scholar 

  13. Sundlof G, Wallin BG. The variability of muscle nerve sympathetic activity in resting recumbent man. J Physiol. 1977;272:383–97.

    PubMed  CAS  Google Scholar 

  14. Charkoudian N, Joyner MJ, Johnson CP, et al. Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol. 2005;568(Pt 1):315–21.

    Article  PubMed  CAS  Google Scholar 

  15. Sundlof G. Wallin BG: Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978;274:621–37.

    PubMed  CAS  Google Scholar 

  16. Narkiewicz K, Phillips BG, Kato M, et al. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension. 2005;45:522–5.

    Article  PubMed  CAS  Google Scholar 

  17. Charkoudian N, Joyner MJ, Barnes SA, et al. Relationship between muscle sympathetic nerve activity and systemic hemodynamics during nitric oxide synthase inhibition in humans. Am J Physiol Heart Circ Physiol. 2006;291:H1378–83.

    Article  PubMed  CAS  Google Scholar 

  18. Ely D, Milsted A, Bertram J, et al. Sry delivery to the adrenal medulla increases blood pressure and adrenal medullary tyrosine hydroxylase of normotensive WKY rats. BMC Cardiovasc Disord. 2007;7:6.

    Article  PubMed  Google Scholar 

  19. •• Hart EC, Charkoudian N, Wallin BG, et al. Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension. 2009;53:571–6. This manuscript demonstrates that resting arterial pressure regulation is different in men and women. The authors show that among young men, basal arterial pressure is maintained by a balance among sympathetic nerve activity, peripheral resistance, and cardiac output. Interestingly, in women there is no relationship of sympathetic nerve activity to peripheral resistance or cardiac output. The data highlight the importance of considering interindividual variability when trying to understand sex differences in arterial pressure regulation.

    Article  PubMed  CAS  Google Scholar 

  20. Hogarth AJ, Mackintosh AF, Mary DA. Gender-related differences in the sympathetic vasoconstrictor drive of normal subjects. Clin Sci Lond. 2007;112:353–61.

    Article  PubMed  Google Scholar 

  21. Lambert E, Straznicky N, Eikelis N, et al. Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens. 2007;25:1411–9.

    Article  PubMed  CAS  Google Scholar 

  22. Matsukawa T, Sugiyama Y, Watanabe T, et al. Gender difference in age-related changes in muscle sympathetic nerve activity in healthy subjects. Am J Physiol. 1998;275(5 Pt 2):R1600–4.

    PubMed  CAS  Google Scholar 

  23. Saleh TM, Connell BJ. Centrally mediated effect of 17beta-estradiol on parasympathetic tone in male rats. Am J Physiol. 1999;276(2 Pt 2):R474–81.

    PubMed  CAS  Google Scholar 

  24. Shoemaker JK, Hogeman CS, Khan M, et al. Gender affects sympathetic and hemodynamic response to postural stress. Am J Physiol Heart Circ Physiol. 2001;281:H2028–35.

    PubMed  CAS  Google Scholar 

  25. Wehrwein EA, Joyner MJ, Hart EC, et al. Blood pressure regulation in humans: calculation of an “error signal” in control of sympathetic nerve activity. Hypertension. 2010;55:264–9.

    Article  PubMed  CAS  Google Scholar 

  26. Minson CT, Halliwill JR, Young TM, Joyner MJ. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation. 2000;101:862–8.

    PubMed  CAS  Google Scholar 

  27. Minson CT, Halliwill JR, Young TM, Joyner MJ. Sympathetic activity and baroreflex sensitivity in young women taking oral contraceptives. Circulation. 2000;102:1473–6.

    PubMed  CAS  Google Scholar 

  28. Ettinger SM, Silber DH, Gray KS, et al. Effects of the ovarian cycle on sympathetic neural outflow during static exercise. J Appl Physiol. 1998;85:2075–81.

    PubMed  CAS  Google Scholar 

  29. Saleh TM, Cribb AE, Connell BJ. Role of estrogen in central nuclei mediating stroke-induced changes in autonomic tone. J Stroke Cerebrovasc Dis. 2003;12:182–95.

    Article  PubMed  Google Scholar 

  30. Spary EJ, Maqbool A, Batten TF. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat. 2009;38:185–96.

    Article  PubMed  CAS  Google Scholar 

  31. Saleh TM, Connell BJ. 17beta-estradiol modulates baroreflex sensitivity and autonomic tone of female rats. J Auton Nerv Syst. 2000;80:148–61.

    Article  PubMed  CAS  Google Scholar 

  32. Saleh MC, Connell BJ, Saleh TM. Medullary and intrathecal injections of 17betaestradiol in male rats. Brain Res. 2000;867:200–9.

    Article  PubMed  CAS  Google Scholar 

  33. Vongpatanasin W, Tuncel M, Mansour Y, et al. Transdermal estrogen replacement therapy decreases sympathetic activity in postmenopausal women. Circulation. 2001;103:2903–8.

    PubMed  CAS  Google Scholar 

  34. Haywood SA, Simonian SX, van der Beek EM, et al. Fluctuating estrogen and progesterone receptor expression in brainstem norepinephrine neurons through the rat estrous cycle. Endocrinology. 1999;140:3255–63.

    Article  PubMed  CAS  Google Scholar 

  35. Murphy AZ, Shupnik MA, Hoffman GE. Androgen and estrogen (alpha) receptor distribution in the periaqueductal gray of the male rat. Horm Behav. 1999;36:98–108.

    Article  PubMed  CAS  Google Scholar 

  36. Tank J, Diedrich A, Szczech E, et al. Baroreflex regulation of heart rate and sympathetic vasomotor tone in women and men. Hypertension. 2005;45:1159–64.

    Article  PubMed  CAS  Google Scholar 

  37. Fu Q, Witkowski S, Okazaki K, Levine BD. Effects of gender and hypovolemia on sympathetic neural responses to orthostatic stress. Am J Physiol Regul Integr Comp Physiol. 2005;289:R109–16.

    Article  PubMed  CAS  Google Scholar 

  38. Kienbaum P, Karlssonn T, Sverrisdottir YB, et al. Two sites for modulation of human sympathetic activity by arterial baroreceptors? J Physiol. 2001;531(Pt 3):861–9.

    Article  PubMed  CAS  Google Scholar 

  39. Macefield VG, Elam M, Wallin BG. Firing properties of single postganglionic sympathetic neurones recorded in awake human subjects. Auton Neurosci. 2002;95:146–59.

    Article  PubMed  Google Scholar 

  40. Scott PA, Tremblay A, Brochu M, St-Louis J. Vasorelaxant action of 17-estradiol in rat uterine arteries: role of nitric oxide synthases and estrogen receptors. Am J Physiol Heart Circ Physiol. 2007;293:H3713–9.

    Article  PubMed  CAS  Google Scholar 

  41. Miller VM, Duckles SP. Vascular actions of estrogens: functional implications. Pharmacol Rev. 2008;60:210–41.

    Article  PubMed  CAS  Google Scholar 

  42. Kneale BJ, Chowienczyk PJ, Brett SE, et al. Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol. 2000;36:1233–8.

    Article  PubMed  CAS  Google Scholar 

  43. Hart EC, Joyner MJ, Wallin BG, et al. Age-related differences in the sympathetic-hemodynamic balance in men. Hypertension. 2009;54:127–33.

    Article  PubMed  CAS  Google Scholar 

  44. Jones PP, Davy KP, Alexander S, Seals DR. Age-related increase in muscle sympathetic nerve activity is associated with abdominal adiposity. Am J Physiol. 1997;272(6 Pt 1):E976–80.

    PubMed  CAS  Google Scholar 

  45. Esler MD, Turner AG, Kaye DM, et al. Aging effects on human sympathetic neuronal function. Am J Physiol. 1995;268(1 Pt 2):R278–85.

    PubMed  CAS  Google Scholar 

  46. Esler M, Hastings J, Lambert G, et al. The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover. Am J Physiol Regul Integr Comp Physiol. 2002;282:R909–16.

    PubMed  CAS  Google Scholar 

  47. Monroe MB, Van Pelt RE, Schiller BC, et al. Relation of leptin and insulin to adiposity-associated elevations in sympathetic activity with age in humans. Int J Obes Relat Metab Disord. 2000;24:1183–7.

    Article  PubMed  CAS  Google Scholar 

  48. Bell C, Seals DR, Monroe MB, et al. Tonic sympathetic support of metabolic rate is attenuated with age, sedentary lifestyle, and female sex in healthy adults. J Clin Endocrinol Metab. 2001;86:4440–4.

    Article  PubMed  CAS  Google Scholar 

  49. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  50. Hall JE, Granger JP, Hester RL, et al. Mechanisms of escape from sodium retention during angiotensin II hypertension. Am J Physiol. 1984;246(5 Pt 2):F627–34.

    PubMed  CAS  Google Scholar 

  51. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41(3 Pt 2):625–33.

    Article  PubMed  Google Scholar 

  52. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14:177–83.

    PubMed  CAS  Google Scholar 

  53. Schlaich MP, Lambert E, Kaye DM, et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43:169–75.

    Article  PubMed  CAS  Google Scholar 

  54. Lambert E, Straznicky N, Schlaich M, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50:862–8.

    Article  PubMed  CAS  Google Scholar 

  55. Wallin BG, Delius W, Hagbarth KE. Comparison of sympathetic nerve activity in normotensive and hypertensive subjects. Circ Res. 1973;33:9–21.

    PubMed  CAS  Google Scholar 

  56. Wallin BG, Delius W, Hagbarth KE. Sympathetic activity in peripheral nerves of normo- and hypertensive subjects. Clin Sci Mol Med Suppl. 1973;45 Suppl 1:127–30.

    Google Scholar 

  57. Wallin BG, Sundlof G. A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension. 1979;1:67–77.

    PubMed  CAS  Google Scholar 

  58. Ferrier C, Esler MD, Eisenhofer G, Wallin, et al. Increased norepinephrine spillover into the jugular veins in essential hypertension. Hypertension. 1992;19:62–9.

    PubMed  CAS  Google Scholar 

  59. Grassi G, Cattaneo BM, Seravalle G, et al. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68–72.

    PubMed  CAS  Google Scholar 

  60. Grassi G, Seravalle G, Bertinieri G, et al. Sympathetic and reflex alterations in systo-diastolic and systolic hypertension of the elderly. J Hypertens. 2000;18:587–93.

    Article  PubMed  CAS  Google Scholar 

  61. Schobel HP, Heusser K, Schmieder RE, et al. Evidence against elevated sympathetic vasoconstrictor activity in borderline hypertension. J Am Soc Nephrol. 1998;9:1581–7.

    PubMed  CAS  Google Scholar 

  62. Rea RF, Hamdan M. Baroreflex control of muscle sympathetic nerve activity in borderline hypertension. Circulation. 1990;82:856–62.

    PubMed  CAS  Google Scholar 

  63. Esler M, Jennings G, Lambert G. Noradrenaline release and the pathophysiology of primary human hypertension. Am J Hypertens. 1989;2(3 Pt 2):140S–6.

    PubMed  CAS  Google Scholar 

  64. Wallin BG, Sundlof G, Stromgren E, Aberg H. Sympathetic outflow to muscles during treatment of hypertension with metoprolol. Hypertension. 1984;6:557–62.

    PubMed  CAS  Google Scholar 

  65. Neumann J, Ligtenberg G, Klein IH, et al. Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension. 2007;49:506–10.

    Article  PubMed  CAS  Google Scholar 

  66. Krum H, Lambert E, Windebank E, et al. Effect of angiotensin II receptor blockade on autonomic nervous system function in patients with essential hypertension. Am J Physiol Heart Circ Physiol. 2006;290:H1706–12.

    Article  PubMed  CAS  Google Scholar 

  67. Fu Q, Zhang R, Witkowski S, et al. Persistent sympathetic activation during chronic antihypertensive therapy: a potential mechanism for long term morbidity? Hypertension. 2005;45:513–21.

    Article  PubMed  CAS  Google Scholar 

  68. Staessen JA, Wang JG, Thijs L. Cardiovascular protection and blood pressure reduction: a meta-analysis. Lancet. 2001;358:1305–15.

    Article  PubMed  CAS  Google Scholar 

  69. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  70. Simms AE, Paton JF, Pickering AE, Allen AM. Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol. 2009;587(Pt 3):597–610.

    Article  PubMed  CAS  Google Scholar 

  71. Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106:2533–6.

    Article  PubMed  Google Scholar 

  72. •• Laterza MC, de Matos LD, Trombetta IC, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49:1298–306. This interesting paper highlights the importance of aerobic exercise training in treating hypertension. The authors demonstrated that exercise training normalized muscle sympathetic nerve activity and reduced arterial pressure in never-treated patients with essential hypertension.

    Article  PubMed  CAS  Google Scholar 

  73. Paton JF, Dickinson CJ, Mitchell G. Harvey Cushing and the regulation of blood pressure in giraffe, rat and man: introducing ‘Cushing’s mechanism’. Exp Physiol. 2009;94:11–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma C. Hart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, E.C., Charkoudian, N. Sympathetic Neural Mechanisms in Human Blood Pressure Regulation. Curr Hypertens Rep 13, 237–243 (2011). https://doi.org/10.1007/s11906-011-0191-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0191-1

Keywords

Navigation