Log in

Antimicrobial Resistance in Urinary Tract Infections

  • Inflammatory/Infectious Bladder Disorders (MS Mourad, Section Editor)
  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize the recent literature regarding antimicrobial-resistant urinary tract infections in the United States and discuss the impact on the care of urologic patients. We discuss strategies to mitigate the development of antimicrobial resistance and outline basic recommendations for empiric treatment of antimicrobial-resistant urinary tract infections.

Recent Findings

Several studies have attempted to evaluate the prevalence, risk factors, burden, and implications of antimicrobial-resistant urinary tract infections. Recent guidelines from the Infectious Disease Society of America in 2011 and 2022 provide recommendations for empiric acute uncomplicated cystitis treatment and considerations for empiric treatment of antimicrobial-resistant infections, respectively.

Summary

Antimicrobial-resistant urinary tract infections are common in urologic patients and increase the risk of adverse effects when not appropriately treated. It is a urologists’ due diligence to prescribe appropriate antimicrobial prophylaxis and treatment and to prevent further development of antimicrobial resistance. Novel non-antimicrobial therapies are promising for treatment and reduction of antimicrobial-resistant infections but require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO. Library cataloguing-in-publication data global action plan on antimicrobial resistance. Geneva, Switzerland: World Health Organization; 2015.

  2. Kousgaard MB, Olesen JA, Arnold SH. Implementing an intervention to reduce use of antibiotics for suspected urinary tract infection in nursing homes – a qualitative study of barriers and enablers based on normalization process theory. BMC Geriatr. 2022;22(1):265. https://doi.org/10.1186/s12877-022-02977-w.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frisbie L, Weissman SJ, Kapoor H, D’Angeli M, Salm A, Radcliff J, Rabinowitz P. outpatient antibiotic resistance patterns of Escherichia coli urinary isolates differ by specialty type. Microbiol Spectr. 2022;10(4):e0237321. https://doi.org/10.1128/spectrum.02373-21.

    Article  CAS  PubMed  Google Scholar 

  4. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20. https://doi.org/10.1093/cid/ciq257. These guidelines introduced the concept of collateral damage and shift in attention to prevention of antibiotic resistance.

    Article  PubMed  Google Scholar 

  5. Antibiotic resistance threats in the United States, 2019. https://doi.org/10.15620/cdc:82532. This report provides antibiotic resistance burden estimates on human health within the United States.

  6. Elvers KT, Wilson VJ, Hammond A, Duncan L, Huntley AL, Hay AD, van der Werf ET. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open. 2020;10(9):e035677. https://doi.org/10.1136/bmjopen-2019-035677.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Forde BM, Roberts LW, Phan MD, Peters KM, Fleming BA, Russell CW, et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat Commun. 2019;10(1):3643. https://doi.org/10.1038/s41467-019-11571-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nielsen KL, Dynesen P, Larsen P, Frimodt-Møller N. Faecal Escherichia coli from patients with E. coli urinary tract infection and healthy controls who have never had a urinary tract infection. J Med Microbiol. 2014;63(Pt 4):582–9. https://doi.org/10.1099/jmm.0.068783-0.

    Article  CAS  PubMed  Google Scholar 

  9. Wozniak TM, Dyda A, Lee X. The increased length of hospital stay and mortality associated with community-associated infections in Australia. Open Forum Infect Dis. 2022;9(5):ofac133. https://doi.org/10.1093/ofid/ofac133.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shields RK, Zhou Y, Kanakamedala H, Cai B. Burden of illness in US hospitals due to carbapenem-resistant Gram-negative urinary tract infections in patients with or without bacteraemia. BMC Infect Dis. 2021;21(1):572. https://doi.org/10.1186/s12879-021-06229-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Hecke O, Wang K, Lee JJ, Roberts NW, Butler CC. Implications of antibiotic resistance for patients’ recovery from common infections in the community: a systematic review and meta-analysis. Clin Infect Dis. 2017;65(3):371–82. https://doi.org/10.1093/cid/cix233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zilberberg MD, Nathanson BH, Sulham K, Shorr AF. Multiple antimicrobial resistance and outcomes among hospitalized patients with complicated urinary tract infections in the US, 2013–2018: a retrospective cohort study. BMC Infect Dis. 2021;21(1):159. https://doi.org/10.1186/s12879-021-05842-0. This retrospective cohort analysis shows the impact of multidrug resistant infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales (ESBL-E), Carbapenem-Resistant enterobacterales (CRE), and pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis. 2022 Aug 25;75(2):187–212. https://doi.org/10.1093/cid/ciac268. These guidelines are quickly evolving on recommendations in treating antimicrobial resistant infections.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cantón R, Loza E, Arcay RM, Cercenado E, Castillo FJ, Cisterna R, Gálvez-Benítez L, et al. Antimicrobial activity of ceftolozane-tazobactam against Enterobacterales and Pseudomonas aeruginosa recovered during the Study for Monitoring Antimicrobial Resistance Trends (SMART) program in Spain (2016-2018). Rev Esp Quimioter. 2021;34(3):228–237. https://doi.org/10.37201/req/019.2021.

  15. Kaye KS, Gupta V, Mulgirigama A, Joshi AV, Scangarella-Oman NE, Yu K, et al. antimicrobial resistance trends in urine Escherichia coli isolates from adult and adolescent females in the United States From 2011 to 2019: Rising ESBL strains and impact on patient management. Clin Infect Dis. 2021;73(11):1992–9. https://doi.org/10.1093/cid/ciab560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunne MW, Aronin SI, Yu KC, Watts JA, Gupta V. A multicenter analysis of trends in resistance in urinary Enterobacterales isolates from ambulatory patients in the United States: 2011–2020. BMC Infect Dis. 2022;22(1):194. https://doi.org/10.1186/s12879-022-07167-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Critchley IA, Cotroneo N, Pucci MJ, Mendes R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS One. 2019;14(12):e0220265. https://doi.org/10.1371/journal.pone.0220265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, et al. Multidrug-resistant bacterial infections in U.S. Hospitalized patients, 2012–2017. N Engl J Med. 2020;382(14):1309–19. https://doi.org/10.1056/NEJMoa1914433.

    Article  CAS  PubMed  Google Scholar 

  19. Goebel MC, Trautner BW, Grigoryan L. The five Ds of outpatient antibiotic stewardship for urinary tract infections. Clin Microbiol Rev. 2021;34(4):e0000320. https://doi.org/10.1128/CMR.00003-20. This review presents framework for antimicrobial stewardship in treating urinary tract infections in the outpatient setting based on evidence.

    Article  PubMed  Google Scholar 

  20. Aronin SI, Gupta V, Dunne MW, Watts JA, Yu KC. Regional differences in antibiotic-resistant enterobacterales urine isolates in the United States: 2018-2020. Int J Infect Dis. 2022;119:142–5. https://doi.org/10.1016/j.ijid.2022.03.052.

    Article  CAS  PubMed  Google Scholar 

  21. Neidell MJ, Cohen B, Furuya Y, Hill J, Jeon CY, Glied S, Larson EL. Costs of healthcare- and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin Infect Dis. 2012;55(6):807–15. https://doi.org/10.1093/cid/cis552.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Anesi JA, Lautenbach E, Nachamkin I, Garrigan C, Bilker WB, Omorogbe J, et al. Poor clinical outcomes associated with community-onset urinary tract infections due to extended-spectrum cephalosporin-resistant Enterobacteriaceae. Infect Control Hosp Epidemiol. 2018;39(12):1431–5. https://doi.org/10.1017/ice.2018.254.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol. 2015;12(10):570–84. https://doi.org/10.1038/nrurol.2015.

    Article  CAS  PubMed  Google Scholar 

  24. Martínez-Casanova J, Gómez-Zorrilla S, Prim N, Dal Molin A, Echeverría-Esnal D, Gracia-Arnillas MP, Sendra E, Güerri-Fernández R, Durán-Jordà X, Padilla E, Horcajada JP, Grau S, Proa-Psmar Group OBOT. Risk factors for amoxicillin-clavulanate resistance in community-onset urinary tract infections caused by Escherichia coli or Klebsiella pneumoniae: the role of prior exposure to fluoroquinolones. Antibiotics (Basel). 2021;10(5):582. https://doi.org/10.3390/antibiotics10050582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeana C, Palmieri FE, Gupta V, Ye G, Lao P, Yu K, et al. Association between fluoroquinolone utilization rates and susceptibilities of gram-negative bacilli: Results from an 8-year intervention by an antibiotic stewardship program in an inner-city United States hospital. Sci Prog. 2021;104(2):368504211011876. https://doi.org/10.1177/00368504211011876.

    Article  CAS  PubMed  Google Scholar 

  26. Wesolek JL, Wu JY, Smalley CM, Wang L, Campbell MJ. Risk factors for trimethoprim and sulfamethoxazole-resistant Escherichia coli in ED patients with urinary tract infections. Am J Emerg Med. 2022;56:178–82. https://doi.org/10.1016/j.ajem.2022.03.052.

    Article  PubMed  Google Scholar 

  27. Larramendy S, Deglaire V, Dusollier P, Fournier JP, Caillon J, Beaudeau F, Moret L. Risk factors of extended-spectrum beta-lactamases-producing Escherichia coli community acquired urinary tract infections: a systematic review. Infect Drug Resist. 2020;3(13):3945–55. https://doi.org/10.2147/IDR.S269033.

    Article  Google Scholar 

  28. Zare M, Vehreschild MJGT, Wagenlehner F. Management of uncomplicated recurrent urinary tract infections. BJU Int. 2022;129(6):668–78. https://doi.org/10.1111/bju.15630.

    Article  PubMed  Google Scholar 

  29. Talan DA, Takhar SS, Krishnadasan A, Mower WR, Pallin DJ, Garg M, et al. Emergence of extended-spectrum β-lactamase urinary tract infections among hospitalized emergency department patients in the United States. Ann Emerg Med. 2021;77(1):32–43. https://doi.org/10.1016/j.annemergmed.2020.08.022.

    Article  PubMed  Google Scholar 

  30. Nicolai E, Pieri M, Gratton E, Motolese G, Bernardini S. Bacterial infection diagnosis and antibiotic prescription in 3 h as an answer to antibiotic resistance: the case of urinary tract infections. Antibiotics (Basel). 2021;10(10):1168. https://doi.org/10.3390/antibiotics10101168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jackson N, Borges CA, Tarlton NJ, Resendez A, Milton AK, de Boer TR, et al. A rapid, antibiotic susceptibility test for multidrug-resistant, Gram-negative bacterial uropathogens using the biochemical assay, DETECT. J Microbiol Methods. 2021;182:106160. https://doi.org/10.1016/j.mimet.2021.106160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapelet G, Corvec S, Montassier E, Herbreteau G, Berrut G, Batard E, de Decker L. Rapid detection of amoxicillin-susceptible Escherichia coli in fresh uncultured urine: a new tool to limit the use of broad-spectrum empirical therapy of community-acquired pyelonephritis. Int J Antimicrob Agents. 2016;47(6):486–9. https://doi.org/10.1016/j.ijantimicag.2016.04.012.

    Article  CAS  PubMed  Google Scholar 

  33. Patel R, Polage CR, Dien Bard J, May L, Lee FM, Fabre V, et al. Envisioning future urinary tract infection diagnostics. Clin Infect Dis. 2022;74(7):1284–92. https://doi.org/10.1093/cid/ciab749.

    Article  PubMed  Google Scholar 

  34. Anger J, Lee U, Ackerman AL, Chou R, Chughtai B, Clemens JQ, Hickling D, Kapoor A, Kenton KS, Kaufman MR, Rondanina MA, Stapleton A, Stothers L, Chai TC. Recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline. J Urol. 2019;202(2):282–9. https://doi.org/10.1097/JU.0000000000000296.

    Article  PubMed  Google Scholar 

  35. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28(1):1–13. https://doi.org/10.1016/j.idc.2013.09.003.

    Article  PubMed  Google Scholar 

  36. Hooton TM. Clinical practice. Uncomplicated urinary tract infection. N Engl J Med. 2012;366(11):1028–37. https://doi.org/10.1056/NEJMcp1104429.

    Article  CAS  PubMed  Google Scholar 

  37. Ong Lopez AMC, Tan CJL, Yabon AS 2nd, Masbang AN. Symptomatic treatment (using NSAIDS) versus antibiotics in uncomplicated lower urinary tract infection: a meta-analysis and systematic review of randomized controlled trials. BMC Infect Dis. 2021;21(1):619. https://doi.org/10.1186/s12879-021-06323-0.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012;2012:681473. https://doi.org/10.1155/2012/681473.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Drekonja DM, Rector TS, Cutting A, Johnson JR. Urinary tract infection in male veterans: treatment patterns and outcomes. JAMA Intern Med. 2013;173(1):62–8. https://doi.org/10.1001/2013.jamainternmed.829.

    Article  PubMed  Google Scholar 

  40. Almomani BA, Khasawneh RA, Saqan R, Alnajjar MS, Al-Natour L. Predictive utility of prior positive urine culture of extended- spectrum β -lactamase producing strains. PLoS One. 2020;15(12):e0243741. https://doi.org/10.1371/journal.pone.0243741. This study evaluated the predictive nature of ESBL-positive-cultures in the past to predict the current pathogen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harding C, Mossop H, Homer T, Chadwick T, King W, Carnell S, et al. Alternative to prophylactic antibiotics for the treatment of recurrent urinary tract infections in women: multicentre, open label, randomised, non-inferiority trial. BMJ. 2022;(376):e068229. https://doi.org/10.1136/bmj-2021-0068229.

  42. Frazee BW, Trivedi T, Montgomery M, Petrovic DF, Yamaji R, Riley L. Emergency department urinary tract infections caused by extended-spectrum β-lactamase-producing enterobacteriaceae: many patients have no identifiable risk factor and discordant empiric therapy is common. Ann Emerg Med. 2018;72(4):449–56. https://doi.org/10.1016/j.annemergmed.2018.05.006.

    Article  PubMed  Google Scholar 

  43. Eure TR, Stone ND, Mungai EA, Bell JM, Thompson ND. Antibiotic-resistant pathogens associated with urinary tract infections in nursing homes: Summary of data reported to the National Healthcare Safety Network Long-Term Care Facility Component, 2013-2017. Infect Control Hosp Epidemiol. 2021;42(1):31–6. https://doi.org/10.1017/ice.2020.348.

    Article  PubMed  Google Scholar 

  44. Nace DA, Hanlon JT, Crnich CJ, Drinka PJ, Schweon SJ, Anderson G, Perera S. A multifaceted antimicrobial stewardship program for the treatment of uncomplicated cystitis in nursing home residents. JAMA Intern Med. 2020;180(7):944–51. https://doi.org/10.1001/jamainternmed.2020.1256.

    Article  PubMed  Google Scholar 

  45. Forsvall A, Jönsson H, Wagenius M, Bratt O, Linder A. Rate and characteristics of infection after transrectal prostate biopsy: a retrospective observational study. Scand J Urol. 2021 Aug;55(4):317–23. https://doi.org/10.1080/21681805.2021.1933169.

    Article  PubMed  Google Scholar 

  46. Choi JW, Kim TH, Chang IH, Kim KD, Moon YT, Myung SC, Kim JW, Kim MS, Kwon JK. Febrile urinary tract infection after prostate biopsy and quinolone resistance. Korean J Urol. 2014;55(10):660–4. https://doi.org/10.4111/kju.2014.55.10.660.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bhatt NR, Murphy CA, Wall N, McEvoy E, Flynn RJ, Thomas AZ, et al. Implications of faecal ESBL carriers undergoing TRUS-guided prostate biopsy (TRUSPB): role of screening prior to TRUSPB. Ir J Med Sci. 2020;189(3):817–23. https://doi.org/10.1007/s11845-019-02149-7.

    Article  PubMed  Google Scholar 

  48. Zisman A, Badaan S, Kastin A, Kravtsov A, Amiel GE, Mullerad M. Tailoring antibiotic prophylaxis for ureteroscopic procedures based on local resistance profiles may lead to reduced rates of infections and urosepsis. Urol Int. 2020;104(1–2):106–12. https://doi.org/10.1159/000503905.

    Article  CAS  PubMed  Google Scholar 

  49. Rosen GH, Kanake S, Golzy M, Malm-Buatsi E, Murray KS. Antimicrobial selection for transurethral procedures across the united states: a state-by-state antibiogram evaluation. Urology. 2022;159:107–13. https://doi.org/10.1016/j.urology.2021.10.009.

    Article  PubMed  Google Scholar 

  50. van der Worp H, Brandenbarg D, Boek PA, Braams JHW, Brink LJF, Keupers J, Blanker MH. Identifying women's preferences for treatment of urinary tract infection: a discrete choice experiment. BMJ Open. 2021;11(11):e049916. https://doi.org/10.1136/bmjopen-2021-049916.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gágyor I, Bleidorn J, Kochen MM, Schmiemann G, Wegscheider K, Hummers-Pradier E. Ibuprofen versus fosfomycin for uncomplicated urinary tract infection in women: randomised controlled trial. BMJ. 2015;23(351):h6544. https://doi.org/10.1136/bmj.h6544.

    Article  CAS  Google Scholar 

  52. Kronenberg A, Bütikofer L, Odutayo A, Mühlemann K, da Costa BR, Battaglia M, et al. Symptomatic treatment of uncomplicated lower urinary tract infections in the ambulatory setting: randomised, double blind trial. BMJ. 2017;359:j4784. https://doi.org/10.1136/bmj.j4784.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vik I, Bollestad M, Grude N, Bærheim A, Damsgaard E, Neumark T, et al. Ibuprofen versus pivmecillinam for uncomplicated urinary tract infection in women-A double-blind, randomized non-inferiority trial. PLoS Med. 2018;15(5):e1002569. https://doi.org/10.1371/journal.pmed.1002569.

  54. Kenneally C, Murphy CP, Sleator RD, Culligan EP. The urinary microbiome and biological therapeutics: Novel therapies for urinary tract infections. Microbiol Res. 2022;259:127010. https://doi.org/10.1016/j.micres.2022.127010. This review outlines the future of antimicrobial resistant urinary tract infection treatment and prevention.

    Article  CAS  PubMed  Google Scholar 

  55. Yazdi M, Bouzari M, Ghaemi EA, Shahin K. Isolation, characterization and genomic analysis of a novel bacteriophage VB_EcoS-Golestan infecting multidrug-resistant Escherichia coli isolated from urinary tract infection. Sci Rep. 2020;10(1):7690. https://doi.org/10.1038/s41598-020-63048-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sybesma W, Zbinden R, Chanishvili N, Kutateladze M, Chkhotua A, Ujmajuridze A, et al. Bacteriophages as potential treatment for urinary tract infections. Front Microbiol. 2016;11(7):465. https://doi.org/10.3389/fmicb.2016.00465.

    Article  Google Scholar 

  57. Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava S, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis. 2021;21(3):427–36. https://doi.org/10.1016/S1473-3099(20)30330-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany L. Damm.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Tiffany Damm declares that she has no conflict of interest. Anne Cameron is a board member for SWIU and SUFU, an investigator for Medtronic, and a speaker for Wellspect and Axonics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Inflammatory/Infectious Bladder Disorders

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damm, T.L., Cameron, A.P. Antimicrobial Resistance in Urinary Tract Infections. Curr Bladder Dysfunct Rep 18, 1–9 (2023). https://doi.org/10.1007/s11884-022-00674-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-022-00674-3

Keywords

Navigation