Log in

Mechanisms Behind NAFLD: a System Genetics Perspective

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize the key factors contributing to the onset and progress of nonalcoholic fatty liver disease (NAFLD) and put them in a system genetics context. We particularly focus on how genetic regulation of hepatic lipids contributes to NAFLD.

Recent Findings

NAFLD is characterized by excessive accumulation of fat in the liver. This can progress to steatohepatitis (inflammation and hepatocyte injury) and eventually, cirrhosis. The severity of NAFLD is determined by a combination of factors including obesity, insulin resistance, and lipotoxic lipids, along with genetic susceptibility. Numerous studies have been conducted on large human cohorts and mouse panels, to identify key determinants in the genome, transcriptome, proteome, lipidome, microbiome and different environmental conditions contributing to NAFLD.

Summary

We review common factors contributing to NAFLD and put them in a systems genetics context. In particular, we describe how genetic regulation of liver lipids contributes to NAFLD. The combination of an unhealthy lifestyle and genetic predisposition increases the likelihood of accumulating lipotoxic specie lipids that may be one of the driving forces behind develo** severe forms of NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roeb E, Steffen HM, Bantel H, Baumann U, Canbay A, Demir M, et al. S2k Guideline non-alcoholic fatty liver disease. Z Gastroenterol. 2015;53(7):668–723. https://doi.org/10.1055/s-0035-1553193.

    Article  CAS  PubMed  Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. https://doi.org/10.1002/hep.29367.

    Article  PubMed  Google Scholar 

  3. Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol. 2010;53(2):372–84. https://doi.org/10.1016/j.jhep.2010.04.008.

    Article  PubMed  Google Scholar 

  4. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33. https://doi.org/10.1002/hep.29466.

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed EA, El-Derany MO, Anwar AM, Saied EM, Magdeldin S. Metabolomics and lipidomics screening reveal reprogrammed signaling pathways toward cancer development in non-alcoholic steatohepatitis. Int J Mol Sci. 2022;24(1). https://doi.org/10.3390/ijms24010210.

  6. Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut. 2020;69(9):1691–705. https://doi.org/10.1136/gutjnl-2020-320622.

    Article  CAS  PubMed  Google Scholar 

  7. Przybyszewski EM, Targher G, Roden M, Corey KE. Nonalcoholic fatty liver disease and cardiovascular disease. Clin Liver Dis (Hoboken). 2021;17(1):19–22. https://doi.org/10.1002/cld.1017.

    Article  PubMed  Google Scholar 

  8. Kasper P, Martin A, Lang S, Kutting F, Goeser T, Demir M, et al. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol. 2021;110(7):921–37. https://doi.org/10.1007/s00392-020-01709-7.

    Article  PubMed  Google Scholar 

  9. Stepanova M, Younossi ZM. Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. Clin Gastroenterol Hepatol. 2012;10(6):646–50. https://doi.org/10.1016/j.cgh.2011.12.039.

    Article  PubMed  Google Scholar 

  10. Lazo M, Hernaez R, Bonekamp S, Kamel IR, Brancati FL, Guallar E, et al. Non-alcoholic fatty liver disease and mortality among US adults: prospective cohort study. BMJ. 2011;343:d6891. https://doi.org/10.1136/bmj.d6891.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weston SR, Leyden W, Murphy R, Bass NM, Bell BP, Manos MM, et al. Racial and ethnic distribution of nonalcoholic fatty liver in persons with newly diagnosed chronic liver disease. Hepatology. 2005;41(2):372–9. https://doi.org/10.1002/hep.20554.

    Article  PubMed  Google Scholar 

  12. Anstee QM, Daly AK, Day CP. Genetic modifiers of non-alcoholic fatty liver disease progression. Biochim Biophys Acta. 2011;1812(11):1557–66. https://doi.org/10.1016/j.bbadis.2011.07.017.

    Article  CAS  PubMed  Google Scholar 

  13. Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO, Zheng Z, et al. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2020;31(2):406-21 e7. https://doi.org/10.1016/j.cmet.2019.11.013.

    Article  CAS  PubMed  Google Scholar 

  14. Dongiovanni P, Stender S, Pietrelli A, Mancina RM, Cespiati A, Petta S, et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med. 2018;283(4):356–70. https://doi.org/10.1111/joim.12719.

    Article  CAS  PubMed  Google Scholar 

  15. Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–61. https://doi.org/10.1016/j.metabol.2016.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lonardo A, Nascimbeni F, Maurantonio M, Marrazzo A, Rinaldi L, Adinolfi LE. Nonalcoholic fatty liver disease: evolving paradigms. World J Gastroenterol. 2017;23(36):6571–92. https://doi.org/10.3748/wjg.v23.i36.6571.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Musso G, Cassader M, Paschetta E, Gambino R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology. 2018;155(2):282-302 e8. https://doi.org/10.1053/j.gastro.2018.06.031.

    Article  CAS  PubMed  Google Scholar 

  18. Seldin M, Yang X, Lusis AJ. Systems genetics applications in metabolism research. Nat Metab. 2019;1(11):1038–50. https://doi.org/10.1038/s42255-019-0132-x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jha P, McDevitt MT, Gupta R, Quiros PM, Williams EG, Gariani K, et al. Systems analyses reveal physiological roles and genetic regulators of liver lipid species. Cell Syst. 2018;6(6):722-33 e6. https://doi.org/10.1016/j.cels.2018.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parker BL, Calkin AC, Seldin MM, Keating MF, Tarling EJ, Yang P, et al. An integrative systems genetic analysis of mammalian lipid metabolism. Nature. 2019;567(7747):187–93. https://doi.org/10.1038/s41586-019-0984-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjærg-Hansen A, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46(4):352–6. https://doi.org/10.1038/ng.2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taliento AE, Dallio M, Federico A, Prati D, Valenti L. Novel insights into the genetic landscape of nonalcoholic fatty liver disease. Int J Environ Res Public Health. 2019;16(15). https://doi.org/10.3390/ijerph16152755.

  23. Sevastianova K, Kotronen A, Gastaldelli A, Perttila J, Hakkarainen A, Lundbom J, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr. 2011;94(1):104–11. https://doi.org/10.3945/ajcn.111.012369.

    Article  CAS  PubMed  Google Scholar 

  24. Norum KR, Berg T, Helgerud P, Drevon CA. Transport of cholesterol. Physiol Rev. 1983;63(4):1343–419. https://doi.org/10.1152/physrev.1983.63.4.1343.

    Article  CAS  PubMed  Google Scholar 

  25. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients. 2015;7(11):9453–74. https://doi.org/10.3390/nu7115475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Q, Bengmark S, Qu S. The role of hepatic fat accumulation in pathogenesis of non-alcoholic fatty liver disease (NAFLD). Lipids Health Dis. 2010;9:42. https://doi.org/10.1186/1476-511X-9-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators Inflamm. 2010;2010:513948. https://doi.org/10.1155/2010/513948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679–89. https://doi.org/10.1002/hep.23280.

    Article  CAS  PubMed  Google Scholar 

  29. Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002;35(2):373–9. https://doi.org/10.1053/jhep.2002.30692.

    Article  CAS  PubMed  Google Scholar 

  30. Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91(12):4753–61. https://doi.org/10.1210/jc.2006-0587.

    Article  CAS  PubMed  Google Scholar 

  31. Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17(1):141–52. https://doi.org/10.1016/j.cmet.2012.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brahe LK, Astrup A, Larsen LH. Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Adv Nutr. 2016;7(1):90–101. https://doi.org/10.3945/an.115.010587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54. https://doi.org/10.1186/s13578-017-0183-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wortelboer K, Nieuwdorp M, Herrema H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine. 2019;44:716–29. https://doi.org/10.1016/j.ebiom.2019.05.066.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hui ST, Kurt Z, Tuominen I, Norheim F, Davis RC, Pan C, et al. The genetic architecture of diet-induced hepatic fibrosis in mice. Hepatology. 2018;68(6):2182–96. https://doi.org/10.1002/hep.30113.

    Article  CAS  PubMed  Google Scholar 

  36. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13(7):412–25. https://doi.org/10.1038/nrgastro.2016.85.

    Article  CAS  PubMed  Google Scholar 

  37. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48(2):206–11. https://doi.org/10.1136/gut.48.2.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. https://doi.org/10.1038/nature11400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mazagova M, Wang L, Anfora AT, Wissmueller M, Lesley SA, Miyamoto Y, et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J. 2015;29(3):1043–55. https://doi.org/10.1096/fj.14-259515.

    Article  CAS  PubMed  Google Scholar 

  40. Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH, et al. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 2022;12:997018. https://doi.org/10.3389/fcimb.2022.997018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carr RM, Reid AE. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep. 2015;17(4):500. https://doi.org/10.1007/s11883-015-0500-2.

    Article  CAS  PubMed  Google Scholar 

  42. Khalid Q, Bailey I, Patel VB. Non-alcoholic fatty liver disease: the effect of bile acids and farnesoid X receptor agonists on pathophysiology and treatment. Liver Res - Open J. 2015;1(2):32–40. https://doi.org/10.17140/lroj-1-106.

    Article  Google Scholar 

  43. Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL. Muscle fiber necrosis associated with human marathon runners. J Neurol Sci. 1983;59(2):185–203.

    Article  CAS  PubMed  Google Scholar 

  44. Nagashimada M, Ota T. Role of vitamin E in nonalcoholic fatty liver disease. IUBMB Life. 2019;71(4):516–22. https://doi.org/10.1002/iub.1991.

    Article  CAS  PubMed  Google Scholar 

  45. Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613. https://doi.org/10.1155/2018/9547613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DelliBovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front Med (Lausanne). 2021;8:595371. https://doi.org/10.3389/fmed.2021.595371.

    Article  Google Scholar 

  47. Kawahara H, Fukura M, Tsuchishima M, Takase S. Mutation of mitochondrial DNA in livers from patients with alcoholic hepatitis and nonalcoholic steatohepatitis. Alcohol Clin Exp Res. 2007;31(1 Suppl):S54-60. https://doi.org/10.1111/j.1530-0277.2006.00287.x.

    Article  PubMed  Google Scholar 

  48. Persico M, Masarone M, Damato A, Ambrosio M, Federico A, Rosato V, et al. Non alcoholic fatty liver disease and eNOS dysfunction in humans. BMC Gastroenterol. 2017;17(1):35. https://doi.org/10.1186/s12876-017-0592-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chalasani N, Gorski JC, Asghar MS, Asghar A, Foresman B, Hall SD, et al. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology. 2003;37(3):544–50. https://doi.org/10.1053/jhep.2003.50095.

    Article  CAS  PubMed  Google Scholar 

  50. El-Koofy NM, El-Karaksy HM, Mandour IM, Anwar GM, El-Raziky MS, El-Hennawy AM. Genetic polymorphisms in non-alcoholic fatty liver disease in obese Egyptian children. Saudi J Gastroenterol. 2011;17(4):265–70. https://doi.org/10.4103/1319-3767.82582.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Namikawa C, Shu-** Z, Vyselaar JR, Nozaki Y, Nemoto Y, Ono M, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol. 2004;40(5):781–6. https://doi.org/10.1016/j.jhep.2004.01.028.

    Article  CAS  PubMed  Google Scholar 

  52. Nobili V, Donati B, Panera N, Vongsakulyanon A, Alisi A, Dallapiccola B, et al. A 4-polymorphism risk score predicts steatohepatitis in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2014;58(5):632–6. https://doi.org/10.1097/MPG.0000000000000279.

    Article  CAS  PubMed  Google Scholar 

  53. Varela NM, Quinones LA, Orellana M, Poniachik J, Csendes A, Smok G, et al. Study of cytochrome P450 2E1 and its allele variants in liver injury of nondiabetic, nonalcoholic steatohepatitis obese women. Biol Res. 2008;41(1):81–92.

    Article  PubMed  Google Scholar 

  54. Krawczyk M, Liebe R, Lammert F. Toward genetic prediction of nonalcoholic fatty liver disease trajectories: PNPLA3 and beyond. Gastroenterology. 2020;158(7):1865-80 e1. https://doi.org/10.1053/j.gastro.2020.01.053.

    Article  CAS  PubMed  Google Scholar 

  55. Eslam M, Sanyal AJ, George J, International Consensus P. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999-2014 e1. https://doi.org/10.1053/j.gastro.2019.11.312.

    Article  CAS  PubMed  Google Scholar 

  56. Al-Serri A, Anstee QM, Valenti L, Nobili V, Leathart JB, Dongiovanni P, et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol. 2012;56(2):448–54. https://doi.org/10.1016/j.jhep.2011.05.029.

    Article  CAS  PubMed  Google Scholar 

  57. Smagris E, BasuRay S, Li J, Huang Y, Lai KM, Gromada J, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015;61(1):108–18. https://doi.org/10.1002/hep.27242.

    Article  CAS  PubMed  Google Scholar 

  58. BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci U S A. 2019;116(19):9521–6. https://doi.org/10.1073/pnas.1901974116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. **itore P, Pirazzi C, Mancina RM, Motta BM, Indiveri C, Pujia A, et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta. 2014;1841(4):574–80. https://doi.org/10.1016/j.bbalip.2013.12.006.

    Article  CAS  PubMed  Google Scholar 

  60. Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012;15(5):691–702. https://doi.org/10.1016/j.cmet.2012.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem. 2010;285(9):6706–15. https://doi.org/10.1074/jbc.M109.064501.

    Article  CAS  PubMed  Google Scholar 

  62. Romeo S, Kozlitina J, **ng C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5. https://doi.org/10.1038/ng.257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP, Li JZ, et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res. 2011;52(2):318–29. https://doi.org/10.1194/jlr.M011205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luukkonen PK, Nick A, Holtta-Vuori M, Thiele C, Isokuortti E, Lallukka-Bruck S, et al. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight. 2019;4(16). https://doi.org/10.1172/jci.insight.127902.

  65. Lu Y, Feng T, Zhao J, Jiang P, Xu D, Zhou M, et al. Polyene phosphatidylcholine ameliorates high fat diet-induced non-alcoholic fatty liver disease via remodeling metabolism and inflammation. Front Physiol. 2022;13:810143. https://doi.org/10.3389/fphys.2022.810143.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Maev IV, Samsonov AA, Palgova LK, Pavlov CS, Shirokova EN, Vovk EI, et al. Effectiveness of phosphatidylcholine as adjunctive therapy in improving liver function tests in patients with non-alcoholic fatty liver disease and metabolic comorbidities: real-life observational study from Russia. BMJ Open Gastroenterol. 2020;7(1):e000368. https://doi.org/10.1136/bmjgast-2019-000368.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, Dufour JF, et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61(1):75–81. https://doi.org/10.1016/j.jhep.2014.02.030.

    Article  CAS  PubMed  Google Scholar 

  68. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011;53(6):1883–94. https://doi.org/10.1002/hep.24283.

    Article  CAS  PubMed  Google Scholar 

  69. Smagris E, Gilyard S, BasuRay S, Cohen JC, Hobbs HH. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem. 2016;291(20):10659–76. https://doi.org/10.1074/jbc.M116.719955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li XY, Liu Z, Li L, Wang HJ, Wang H. TM6SF2 rs58542926 is related to hepatic steatosis, fibrosis and serum lipids both in adults and children: a meta-analysis. Front Endocrinol (Lausanne). 2022;13:1026901. https://doi.org/10.3389/fendo.2022.1026901.

    Article  PubMed  Google Scholar 

  71. Fan Y, Lu H, Guo Y, Zhu T, Garcia-Barrio MT, Jiang Z, et al. Hepatic transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice. Gastroenterology. 2016;150(5):1208–18. https://doi.org/10.1053/j.gastro.2016.01.005.

    Article  CAS  PubMed  Google Scholar 

  72. Mahdessian H, Taxiarchis A, Popov S, Silveira A, Franco-Cereceda A, Hamsten A, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A. 2014;111(24):8913–8. https://doi.org/10.1073/pnas.1323785111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ehrhardt N, Doche ME, Chen S, Mao HZ, Walsh MT, Bedoya C, et al. Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis. Hum Mol Genet. 2017;26(14):2719–31. https://doi.org/10.1093/hmg/ddx159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gronert K, Kantarci A, Levy BD, Clish CB, Odparlik S, Hasturk H, et al. A molecular defect in intracellular lipid signaling in human neutrophils in localized aggressive periodontal tissue damage. J Immunol. 2004;172(3):1856–61. https://doi.org/10.4049/jimmunol.172.3.1856.

    Article  CAS  PubMed  Google Scholar 

  75. Koybasi S, Senkal CE, Sundararaj K, Spassieva S, Bielawski J, Osta W, et al. Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J Biol Chem. 2004;279(43):44311–9. https://doi.org/10.1074/jbc.M406920200.

    Article  CAS  PubMed  Google Scholar 

  76. Kroesen BJ, Pettus B, Luberto C, Busman M, Sietsma H, de Leij L, et al. Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J Biol Chem. 2001;276(17):13606–14. https://doi.org/10.1074/jbc.M009517200.

    Article  CAS  PubMed  Google Scholar 

  77. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology (Baltimore, MD). 2007;45(6):1366–74. https://doi.org/10.1002/hep.21655.

    Article  CAS  PubMed  Google Scholar 

  78. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68(2):280–95. https://doi.org/10.1016/j.jhep.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  79. Brankovic M, Jovanovic I, Dukic M, Radonjic T, Opric S, Klasnja S, et al. Lipotoxicity as the leading cause of non-alcoholic steatohepatitis. Int J Mol Sci. 2022;23(9). https://doi.org/10.3390/ijms23095146.

  80. Lusis AJ, Seldin MM, Allayee H, Bennett BJ, Civelek M, Davis RC, et al. The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J Lipid Res. 2016;57(6):925–42. https://doi.org/10.1194/jlr.R066944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. • Norheim F, Chella Krishnan K, Bjellaas T, Vergnes L, Pan C, Parks BW, et al. Genetic regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Mol Syst Biol. 2021;17(1):e9684. https://doi.org/10.15252/msb.20209684. (This study examined the role of lipid species’ role in NAFLD, using various analytical methods on data from 100 inbred mice strains fed a high-fat/high-sucrose diet. They discovered two genes, Ifi203 and Map2k6, that control phosphatidylcholine homeostasis and triacylglycerol accumulation in the liver, respectively.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Drozdz K, Nabrdalik K, Kwiendacz H, Hendel M, Olejarz A, Tomasik A, et al. Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach. Cardiovasc Diabetol. 2022;21(1):240. https://doi.org/10.1186/s12933-022-01672-9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, et al. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42(6):e168–85. https://doi.org/10.1161/ATV.0000000000000153.

    Article  CAS  PubMed  Google Scholar 

  84. Friedrich-Rust M, Schoelzel F, Maier S, Seeger F, Rey J, Fichtlscherer S, et al. Severity of coronary artery disease is associated with non-alcoholic fatty liver disease: a single-blinded prospective mono-center study. PLoS One. 2017;12(10):e0186720. https://doi.org/10.1371/journal.pone.0186720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Z, Zheng M, Lei H, Jiang Z, Chen Y, He H, et al. A clinical study of the correlation between metabolic-associated fatty liver disease and coronary plaque pattern. Sci Rep. 2023;13(1):7224. https://doi.org/10.1038/s41598-023-34462-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021;184(10):2537–64. https://doi.org/10.1016/j.cell.2021.04.015.

    Article  CAS  PubMed  Google Scholar 

  87. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22. https://doi.org/10.1038/s41591-018-0104-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. •• Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A Jr, et al. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med. 2023;10:1116861. https://doi.org/10.3389/fcvm.2023.1116861. (This review is focused on the intricate connections between nonalcoholic fatty liver disease and cardiovascular disease. It also ventures into the exploration of potential therapeutic strategies targeting both ailments simultaneously)

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chew NWS, Chong B, Ng CH, Kong G, Chin YH, **ao W, et al. The genetic interactions between non-alcoholic fatty liver disease and cardiovascular diseases. Front Genet. 2022;13:971484. https://doi.org/10.3389/fgene.2022.971484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Diogo D, Tian C, Franklin CS, Alanne-Kinnunen M, March M, Spencer CCA, et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9(1):4285. https://doi.org/10.1038/s41467-018-06540-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruschenbaum S, Schwarzkopf K, Friedrich-Rust M, Seeger F, Schoelzel F, Martinez Y, et al. Patatin-like phospholipase domain containing 3 variants differentially impact metabolic traits in individuals at high risk for cardiovascular events. Hepatol Commun. 2018;2(7):798–806. https://doi.org/10.1002/hep4.1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu JT, Liu SS, **e XJ, Liu Q, **n YN, Xuan SY. Independent and joint correlation of PNPLA3 I148M and TM6SF2 E167K variants with the risk of coronary heart disease in patients with non-alcoholic fatty liver disease. Lipids Health Dis. 2020;19(1):29. https://doi.org/10.1186/s12944-020-01207-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017;66(4):1111–24. https://doi.org/10.1002/hep.29273.

    Article  CAS  PubMed  Google Scholar 

  94. Linden D, Ahnmark A, **itore P, Ciociola E, Ahlstedt I, Andreasson AC, et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab. 2019;22:49–61. https://doi.org/10.1016/j.molmet.2019.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Petta S, Valenti L, Marchesini G, Di Marco V, Licata A, Camma C, et al. PNPLA3 GG genotype and carotid atherosclerosis in patients with non-alcoholic fatty liver disease. PLoS One. 2013;8(9):e74089. https://doi.org/10.1371/journal.pone.0074089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Musso G, Cassader M, Gambino R. PNPLA3 rs738409 and TM6SF2 rs58542926 gene variants affect renal disease and function in nonalcoholic fatty liver disease. Hepatology. 2015;62(2):658–9. https://doi.org/10.1002/hep.27643.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The figure is created with BioRender.com.

Funding

Shirin Pourteymour has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 801133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frode A. Norheim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourteymour, S., Drevon, C.A., Dalen, K.T. et al. Mechanisms Behind NAFLD: a System Genetics Perspective. Curr Atheroscler Rep 25, 869–878 (2023). https://doi.org/10.1007/s11883-023-01158-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-023-01158-3

Keywords

Navigation