Log in

Immunoglobulin Glycosylation Effects in Allergy and Immunity

  • Basic and Applied Science (I Lewkowich, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review will be to familiarize the reader with the general area of antibody (Ab) glycosylation and to summarize the known functional roles of glycosylation and how glycan structure can contribute to various disease states with emphasis on allergic disease.

Recent Findings

Both immunoglobulin (Ig) isotype and conserved Fc glycosylation sites often dictate the downstream activity of an Ab where complexity and degree of glycosylation contribute to its ability to bind Fc receptors (FcRs) and activate complement. Most information on the effects of glycosylation center on IgG in cancer therapy and autoimmunity. In cancer therapy, glycosylation modifications that enhance affinity for activating FcRs are utilized to facilitate immune-mediated tumor cell killing. In autoimmunity, disease severity has been linked to alterations in the presence, location, and composition of Fc glycans. Significantly less is understood about the role of glycosylation in the setting of allergy and asthma. However, recent data demonstrate that glycosylation of IgE at the asparagine-394 site of Cε3 is necessary for IgE interaction with the high affinity IgE receptor but, surprisingly, glycosylation has no effect on IgE interaction with its low-affinity lectin receptor, CD23.

Summary

Variations in the specific glycoform may modulate the interaction of an Ig with its receptors. Significantly more is known about the functional effects of glycosylation of IgG than for other Ig isotypes. Thus, the role of glycosylation is much better understood in the areas of autoimmunity and cancer therapy, where IgG is the dominant isotype, than in the field of allergy, where IgE predominates. Further work is needed to fully understand the role of glycan variation in IgE and other Ig isotypes with regard to the inhibition or mediation of allergic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wright JD, Chu H-M, Huang C-H, Ma C, Chang TW, Lim C. Structural and physical basis for anti-IgE therapy. Sci Rep. 2015;5:11581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Furness AJS, Vargas FA, Peggs KS, Quezada SA. Impact of tumour microenvironment and Fc receptors on the activity of immunomodulatory antibodies. Trends Immunol. 2014;35(7):290–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hodi F, O’Day S, McDermott D, Weber R, Sosman J, Haanen J, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamane-Ohnuki N, Satoh M. Production of therapeutic antibodies with controlled fucosylation. MAbs. 2009;1(3):230–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Irani V, Guy AJ, Andrew D, Beeson JG, Ramsland PA, Richards JS. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol. 2015;67(2):171–82.

    Article  CAS  PubMed  Google Scholar 

  6. Fanning GWLJ, Connor AM. Development of the immunoglobulin repertoire. Clin Immunol Immunopathol. 1996;79(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  7. Schroeder HWJ, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125:S41–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(14):575–81.

    Article  CAS  PubMed  Google Scholar 

  9. Mandel B. Neutralization of poliovirus: a hypothesis to explain the mechanism and the one-hit character of the neutralization reaction. Virology. 1976;69(2):500–10.

    Article  CAS  PubMed  Google Scholar 

  10. Bournazos S, Klein F, Pietzsch J, Seaman MS, Nussenzweig MC, Ravetch JV. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell. 2014;158(6):1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DiLillo DJ, Palese P, Wilson PC, Ravetch JV. Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. J Clin Invest. 2016;126(2):1–6.

    Article  Google Scholar 

  12. Ricklin D, Hajishengallis G, Yang K, Lambris J. Complement—a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Daëron M, et al. Polymorphic variants for human IgG subclasses Specificity and affinity of human Fcg receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716–25.

    Article  CAS  PubMed  Google Scholar 

  14. Vidarsson G, Dekkers G, and Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol., 2014;5: no. OCT 1–17.

  15. Kubota R, Niwa M, Satoh S, Akinaga K, Shitara, and Hanai N. Engineered therapeutic antibodies with improved effector functions. Cancer Sci. 2009;100:1566–1572

  16. Chan AC, and Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol. 2010;10:301–316

  17. Blank U, Launay P, Benhamou M, Monteiro RC. Inhibitory ITAMs as novel regulators of immunity. Immunol Rev. 2009;232(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  18. Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014;15(8):707–16. This article delineates how the IgG Fc domain modulates the affinity to Fc receptors (type I and II). It gives insights about the downstream pro-inflammatory or immunomodulatory pathways by engaging type I or type II FcRs.

  19. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–47.

    Article  CAS  PubMed  Google Scholar 

  20. Boesch AW, Brown EP, Cheng HD, Ofori MO, Normandin E, Nigrovic PA, et al. Highly parallel characterization of IgG Fc binding interactions. MAbs. 2014;6(4):915–27.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang TT, Maamary J, Tan GS, Bournazos S, Davis CW, Krammer F, et al. Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell. 2015;162(1):160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Massoud AH, Yona M, Xue D, Chouiali F, Alturaihi H, Ablona A, et al. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol. 2014;133(3):853–863.e5. This article documents that the sialylated fraction of IVIG induces regulatory T cells. Binding of sialylated IgG of IVIG to the C type lectin receptor DCIR ameliorates the airway hyperresponsiveness (AHR).

  23. Isakov N. Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades. J. Leukoc. Biol. 1997;61:6–16.

  24. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science. 2005;310(5753):1510–2.

    Article  CAS  PubMed  Google Scholar 

  25. Diebolder CA, Beurskens FJ, De Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343(6176):1260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davies AM, Jefferis R, Sutton BJ. Crystal structure of deglycosylated human IgG4-Fc. Mol Immunol. 2014;62(1):46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larché M, Akdis C, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol. 2006;6:761–71.

    Article  PubMed  CAS  Google Scholar 

  28. Möbs C, Slotosch C, Loffler H, Jakob T, Hertl M, Pfutzner W. Birch pollen immunotherapy leads to differential induction of regulatory T cells and delayed helper T cell immune deviation. J Immunol. 2010;184(4):2194–203.

    Article  PubMed  Google Scholar 

  29. Möbs C, Ipsen H, Mayer L, Slotosch C, Petersen A, Würtzen PA, et al. Birch pollen immunotherapy results in long-term loss of Bet v 1-specific TH2 responses, transient TR1 activation, and synthesis of IgE-blocking antibodies. J. Allergy Clin. Immunol. 2012;130(5):1108–1116.

  30. Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014;133(3):621–31.

    Article  CAS  PubMed  Google Scholar 

  31. Aalberse RC, van der Gaag R, van Leeuwen J. Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J Immunol. 1983;130(2):722–6.

    CAS  PubMed  Google Scholar 

  32. Mothes N, Heinzkill M, Drachenberg KJ, Sperr WR, Krauth MT, Majlesi Y, et al. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: Reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin Exp Allergy. 2003;33(9):1198–208.

    Article  CAS  PubMed  Google Scholar 

  33. Strait RT, Morris SC, Finkelman FD. IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcyRIIb cross-linking. J Clin Invest. 2006;116(3):833–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burton OT, Logsdon SL, Zhou JS, Medina-Tamayo J, Abdel-Gadir A, Noval Rivas M, et al. Oral immunotherapy induces IgG antibodies that act through FcyRIIb to suppress IgE-mediated hypersensitivity. J Allergy Clin Immunol. 2014;134(6):1310–1317.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santos AF, James LK, Bahnson HT, Shamji MH, Couto-Francisco NC, Islam S, et al. IgG4 inhibits peanut-induced basophil and mast cell activation in peanut-tolerant children sensitized to peanut major allergens. J Allergy Clin Immunol. 2015;135(5):1249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jefferis R, Lund J. Interaction sites on human IgG-Fc for FcyR: current models. Immunol Lett. 2002;82(1–2):57–65.

    Article  CAS  PubMed  Google Scholar 

  37. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 1985;316(6027):452–7.

    Article  CAS  PubMed  Google Scholar 

  38. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  PubMed  Google Scholar 

  39. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science (80- ). 2006;313(5787):670–3. This article confirms that Fc sialylation modulates the affinity to Fc gamma receptors and demonstrate that Fc sialylation switches IgG to anti-inflammatory properties.

  40. Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD. Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A. 2008;105(51):20167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med. 2012;18(9):1401–6. This article demonstrates that high galactosylation of IgG is crucial for the inhibitory property of IgG1 immune complexes, through promotion of an association between FcγRIIB and dectin-1 and ultimately results in a blockade of C5a effector functions in vitro and C5a-dependent inflammatory responses in vivo.

  42. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Gloria Meng Y, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–40.

    Article  CAS  PubMed  Google Scholar 

  43. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278(5):3466–73.

    Article  CAS  PubMed  Google Scholar 

  44. Natsume A, Wakitani M, Yamane-Ohnuki N, Shoji-Hosaka E, Niwa R, Uchida K, et al. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded bispecific antibody comprising of two single-chain antibodies linked to the antibody constant region. J Biochem. 2006;140(3):359–68.

    Article  CAS  PubMed  Google Scholar 

  45. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology. 2007;17(1):104–18.

    Article  CAS  PubMed  Google Scholar 

  46. Mori K, Iida S, Yamane-Ohnuki N, Kanda Y, Kuni-Kamochi R, Nakano R, et al. Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. Cytotechnology. 2007;55(2–3):109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DiLillo D, Ravetch JV. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect. Cell. 2014;161(5):1035–45.

    Article  CAS  Google Scholar 

  48. Anthony RM, Wermeling F, Karlsson MCI, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A. 2008;105(50):19571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anthony R, Kobayashi T, Wermeling F, Ravetch J. Intravenous gammaglobulin suppresses inflammation through a novel TH 2 pathway. Nature. 2011;475(7354):110–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anthony RM, Nimmerjahn F. The role of differential IgG glycosylation in the interaction of antibodies with FcγRs in vivo. Curr Opin Organ Transplant. 2011;16(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  51. Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig RJ, Nimmerjahn F. Broad requirement for terminal sialic acid residues and FcγRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol. 2014;44(5):1444–53.

    Article  CAS  PubMed  Google Scholar 

  52. Schwab I, Biburger M, Krönke G, Schett G, Nimmerjahn F. IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur J Immunol. 2012;42(4):826–30.

    Article  CAS  PubMed  Google Scholar 

  53. Fiebiger BM, Maamary J, Pincetic A, and Ravetch JV. Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs. Proc. Natl. Acad. Sci. 2015;112(18):E2385–94.

  54. Rombouts Y, Ewing E, van de Stadt LA, Selman MHJ, Trouw LA, Deelder AM, et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis. 2013;1–10.

  55. Ohmi Y, Ise W, Harazono A, Takakura D, Fukuyama H, Baba Y, et al. Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis. Nat Commun. 2016;7:1–12. This article describes that low IgG Fc sialylation correlates with severity of rheumatoid arthritis in humans and mice. The article also demonstrates that IgG Fc sialylation suppresses the development of collagen-induced arthritis (CIA).

  56. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1995;1(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  57. Bondt A, Selman MHJ, Deelder AM, Hazes JMW, Willemsen SP, Wuhrer M, et al. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. J Proteome Res. 2013;12(10):4522–31.

    Article  CAS  PubMed  Google Scholar 

  58. Trbojević Akmačić I, Ventham NT, Theodoratou E, Vučković F, Kennedy NA, Krištić J, et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm Bowel Dis. 2015;21(6):1237–47.

    PubMed  PubMed Central  Google Scholar 

  59. Dong X, Storkus WJ, Salter RD. Binding and uptake of agalactosyl IgG by mannose receptor on macrophages and dendritic cells. J Immunol. 1999;163:5427–34.

    CAS  PubMed  Google Scholar 

  60. Arnold JN, Dwek RA, Rudd PM, Sim RB. Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol Lett. 2006;106(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  61. Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang LX, et al. J Clin Invest. 2015;125(11):4160–70. This report demonstrates that sialylation of IgG Fc reduces the binding affinity of IgG to C1q thus impairing its complement-dependent cytotoxicity and provides an FcγR-independent mechanism for sialylation to limit the inflammatory properties of IgG.

  62. Harre U, Lang SC, Pfeifle R, Rombouts Y, Frühbeißer S, Amara K, et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat Commun. 2015;6:6651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Collins ES, Galligan MC, Saldova R, Adamczyk B, Abrahams JL, Campbell MP, et al. Glycosylation status of serum in inflammatory arthritis in response to anti-TNF treatment. Rheumatology. 2013;52(9):1572–82.

    Article  CAS  PubMed  Google Scholar 

  64. Yamada K, Ito K, Furukawa JI, Nakata J, Alvarez M, Verbeek JS, et al. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia. J Autoimmun. 2013;47:104–10.

    Article  CAS  PubMed  Google Scholar 

  65. Ito K, Furukawa J, Yamada K, Tran NL, Shinohara Y, Izui S. Lack of galactosylation enhances the pathogenic activity of IgG1 but Not IgG2a anti-erythrocyte autoantibodies. J Immunol. 2014;192(2):581–8.

    Article  CAS  PubMed  Google Scholar 

  66. Oefner CM, Winkler A, Hess C, Lorenz AK, Holecska V, Huxdorf M, et al. Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J Allergy Clin Immunol. 2012;129(6):1647–55.

    Article  CAS  PubMed  Google Scholar 

  67. Hess C, Winkler A, Lorenz AK, Holecska V, Blanchard V, Eiglmeier S, et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J Clin Invest. 2013;123(9):3788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW, et al. Antigen-specific antibody glycosylation is regulated via vaccination. PLoS Pathog. 2016;12(3):e1005456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Invest. 2013;123(5):2183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8(3):205–17.

    Article  CAS  PubMed  Google Scholar 

  71. Sutton BJ, Davies AM. Structure and dynamics of IgE-receptor interactions: FcERI and CD23/FcERII. Immunol Rev. 2015;268(1):222–35.

    Article  CAS  PubMed  Google Scholar 

  72. Dorrington KJ, Bennich HH. Structure-function relationships in human immunoglobulin E. Immunol Rev. 1978;41:3–25.

    Article  CAS  PubMed  Google Scholar 

  73. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, et al. The biology of IgE and the basis of allergic disease. Annu Rev Immunol. 2003;21(1):579–628.

    Article  CAS  PubMed  Google Scholar 

  74. Galli S, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2013;18(5):693–704.

    Article  CAS  Google Scholar 

  75. Berin MC. Pathogenesis of IgE-mediated food allergy. Clin Exp Allergy. 2015;45(10):1483–96. doi:10.1111/cea.12598.

  76. Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, Tsai M, et al. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity. 2013;39(5):963–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity. 2013;39(5):976–85.

    Article  CAS  PubMed  Google Scholar 

  78. Starkl P, Marichal T, Gaudenzio N, Reber LL, Sibilano R, Tsai M, et al. IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity. J Allergy Clin Immunol. 2016;137(1):246–257.e11.

    Article  CAS  PubMed  Google Scholar 

  79. Mukai K, Tsai M, Starkl P, Marichal T, and Galli SJ. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol. 2016;38(5):581–603. doi:10.1007/s00281-016-0565-1.

  80. Young RJ, Owens RJ, Mackay GA, Chan CM, Shi J, Hide M, et al. Secretion of recombinant human IgE-Fc by mammalian cells and biological activity of glycosylation site mutants. Protein Eng. 1995;8(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  81. Vercelli D, Helm B, Marsh P, Padlan E, Geha RS, Gould H. The B-cell binding site on human immunoglobulin E. Nature. 1989;338(6217):649–51.

    Article  CAS  PubMed  Google Scholar 

  82. Nettleton M, Kochan J. Role of Glycosylation Sites in the IgE Fc Molecule. Int Arch Allergy Immunol. 1995;107:328–9.

    Article  CAS  PubMed  Google Scholar 

  83. Helm B, Marsh P, Vercelli D, Padlan E, Gould H, Geha R. The mast cell binding site on human immunoglobulin E. Nature. 1988;331:180–3.

    Article  CAS  PubMed  Google Scholar 

  84. Shade K-TC, Platzer B, Washburn N, Mani V, Bartsch YC, Conroy M, et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med. 2015;212(4):457–67. This article demonstrates that the oligomannose structure at Asn394 of IgE is substantial for IgE-binding to Fc epsilon RI, mast cell activation and development of anaphylaxis.

  85. Johansen F-E, Braathen R, Brandtzaeg P. Role of J chain in secretory immunoglobulin formation. Scand J Immunol. 2000;52(3):240–8.

    Article  CAS  PubMed  Google Scholar 

  86. Bakema JE, Van Egmond M. Immunoglobulin A: a next generation of therapeutic antibodies? MAbs. 2011;3(4):352–61.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Novak J, Julian BA, Mestecky J, Renfrow MB. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 2012;34(3):365–82.

    Article  CAS  PubMed  Google Scholar 

  88. Novak J, Julian BA, Tomana M, Mestecky J. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol. 2008;28(1):78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mestecky J, Raska M, Julian BA, Gharavi AG, Renfrow MB, Moldoveanu Z, et al. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol Mech Dis. 2013;8(1):217–40.

    Article  CAS  Google Scholar 

  90. Mostov KE. Transepithelial transport of immunoglobulins. Cardiovasc Res. 1994;12:63–84.

    CAS  Google Scholar 

  91. Hamburger AE, Bjorkman PJ, Herr AB. Structural insights into antibody-mediated mucosal immunity. Curr Top Microbiol Immunol. 2006;308:173–204.

    CAS  PubMed  Google Scholar 

  92. Norderhaug IN, Johansen FE, Schjerven H, Brandtzaeg P. Regulation of the formation and external transport of secretory immunoglobulins. Crit Rev Immunol. 1999;19(5–6):481–508.

    CAS  PubMed  Google Scholar 

  93. Herr AB, Ballister ER and Bjorkman PJ. Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature. 2003;423:614–620.

  94. Ramsland PA, Willoughby N, Trist HM, Farrugia W, Hogarth PM, Fraser JD, Wines BD. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Nat Acad Sci USA. 2007;104(38):15015–56. http://www.pnas.org/content/104/38/15051

  95. Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, et al. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fca receptor interactions. J Biol Chem. 1998;273(4):2260–72.

    Article  CAS  PubMed  Google Scholar 

  96. Gomes MM, Herr AB. IgA and IgA-specific receptors in human disease: structural and functional insights into pathogenesis and therapeutic potential. Springer Semin Immunopathol. 2006;28(4):383–95.

    Article  CAS  PubMed  Google Scholar 

  97. Royle L, Roos A, Harvey DJ, Wormald MR, Van Gijlswijk-Janssen D, Redwan ERM, et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem. 2003;278(22):20140–53.

    Article  CAS  PubMed  Google Scholar 

  98. Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthésy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity. 2002;17(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu H, Novak L, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008;118(2):629–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ben Mkaddem S, Christou I, Rossato E, Berthelot L, Lehuen A, Monteiro RC. IgA, IgA receptors, and their anti-inflammatory properties. In: Daeron M, Nimmerjahn F, editors. Fc receptors. Cham: Springer International Publishing; 2014. p. 221–35.

    Google Scholar 

  102. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol. 2001;167(5):2861–8.

    Article  CAS  PubMed  Google Scholar 

  103. Sangeetha SR, Appukuttan PS. IgA1 is the premier serum glycoprotein recognized by human galectin-1 since T antigen (Galß1 to 3GalNAc-) is far superior to non-repeating N-acetyl lactosamine as ligand. Int J Biol Macromol. 2005;35(5):269–76.

    Article  CAS  PubMed  Google Scholar 

  104. Cederfur C, Salomonsson E, Nilsson J, Halim A, Öberg CT, Larson G, et al. Different affinity of galectins for human serum glycoproteins: galectin-3 binds many protease inhibitors and acute phase proteins. Glycobiology. 2008;18(5):384–94.

    Article  CAS  PubMed  Google Scholar 

  105. Stockert RJ, Kressner MS, Collins JC, Sternlieb I, Morell AG. IgA interaction with the asialoglycoprotein receptor. Proc Natl Acad Sci U S A. 1982;79(20):6229–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR. The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J Exp Med. 2000;191(12):2171–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)a1 receptor and its enhanced expression on mesangial cells in Iga nephropathy. J Exp Med. 2001;194(4):417–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moura IC. Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol. 2004;15(3):622–34.

    Article  CAS  PubMed  Google Scholar 

  109. Rudd PM, Fortune F, Patel T, Parekh RB, Dwek RA, Lehner T. A human T-cell receptor recognizes ‘O’-linked sugars from the hinge region of human IgA1 and IgD. Immunology. 1994;83(1):99–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gomes MM, Wall SB, Takahashi K, Novak J, Renfrow MB, Herr AB. Analysis of IgA1 N-glycosylation and its contribution to FcαRI binding. Biochemistry. 2008;47(43):11285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saulsbury FT. Alterations in the O-linked glycosylation of IgA1 in children with Henoch-Schonlein purpura. J Rheumatol. 1997;24(11):2246–9.

    CAS  PubMed  Google Scholar 

  112. Lau KK, Wyatt RJ, Moldoveanu Z, Tomana M, Julian BA, Hogg RJ, et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr Nephrol. 2007;22(12):2067–72.

    Article  PubMed  Google Scholar 

  113. Kokubo T, Yoshiyuki H, Iwase H, Horii A, Tanaka A, Nishikido J, et al. Evidence for Involvement of IgA 1 hinge glycopeptide in the IgA1-IgA1 interaction in IgA nephropathy. J Am Soc Nephrol. 1997;8:915–9.

    CAS  PubMed  Google Scholar 

  114. Yanagihara T, Brown R, Hall S, Moldoveanu Z, Goepfert A, Tomana M, et al. In vitro-generated immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. Results Immunol. 2012;2:166–72.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Horynova M, Raska M, Clausen H, Novak J. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci. 2013;70(5):829–39.

    Article  CAS  Google Scholar 

  116. Barratt J, Smith AC, Feehally J. The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology. 2007;12(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  117. De Wolff JF, Dickinson SJ, Smith AC, Molyneux K, Feehally J, Simon A, et al. Abnormal IgD and IgA1 O-glycosylation in hyperimmunoglobulinaemia D and periodic fever syndrome. Clin Exp Med. 2009;9(4):291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffié C, et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity. 2005;22(1):31–42.

    CAS  PubMed  Google Scholar 

  119. Aloulou M, Mkaddem SB, Biarnes-Pelicot M, Boussetta T, Souchet H, Rossato E, et al. IgG1 and IVIg induce inhibitory ITAM signaling through FcγRIII controlling inflammatory responses. Blood. 2012;119(13):3084–96.

    Article  CAS  PubMed  Google Scholar 

  120. Mkaddem SB, Hayem G, Jönsson F. Shifting FcγRIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. J Clin Invest. 2014;124(9):3945–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Diana J, Moura IC, Vaugier C, Gestin A, Tissandie E, Beaudoin L, et al. Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J Immunol. 2013;191(5):2335–43.

    Article  CAS  PubMed  Google Scholar 

  122. Gloudemans AK, Lambrecht BN, and Smits HH. Potential of immunoglobulin A to prevent allergic asthma. Clin Dev Immunol. 2013;2013:542091.

  123. Smits HH, Gloudemans AK, van Nimwegen M, Willart MA, Soullie T, Muskens F, et al. Cholera toxin B suppresses allergic inflammation through induction of secretory IgA. Mucosal Immunol. 2009;2(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  124. Kishore U, Gupta SK, Perdikoulis MV, Kojouharova MS, Urban BC, Reid KBM. Modular organization of the carboxyl-terminal, globular head region of human C1q A, B, and C chains. J Immunol. 2003;171(2):812–20.

    Article  CAS  PubMed  Google Scholar 

  125. Arnold JN, Wormald MR, Suter DM, Radcliffe CM, Harvey DJ, Dwek RA, et al. Human serum IgM glycosylation: Identification of glycoforms that can bind to Mannan-binding lectin. J Biol Chem. 2005;280(32):29080–7.

    Article  CAS  PubMed  Google Scholar 

  126. Colucci M, Stöckmann H, Butera A, Masotti A, Baldassarre A, Giorda E, et al. Sialylation of N-linked glycans influences the immunomodulatory effects of IgM on T cells. J Immunol. 2015;194(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  127. Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupré L, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Melliss SJ, Baenzigere U. Structures of the oligosaccharides present at the three asparagine-linked glycosylation sites of human IgD. J Biol Chem. 1983;258(19):11546–56.

    Google Scholar 

  129. Mellis SJ, Baenziger JU. Structures of the O-glycosidically linked oligosaccharides of human IgD. J Biol Chem. 1983;258(19):11557–63.

    CAS  PubMed  Google Scholar 

  130. Arnold JN, Radcliffe CM, Wormald MR, Royle L, Harvey DJ, Crispin M, et al. The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J Immunol. 2004;173:6831–40.

    Article  CAS  PubMed  Google Scholar 

  131. Amin AR, Tamma SM, Oppenheim JD, Finkelman FD, Kieda C, Coico RF, et al. Specificity of the murine IgD receptor on T cells is for N-linked glycans on IgD molecules. Proc Natl Acad Sci. 1991;88(20):9238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith AC. O-glycosylation of serum IgD in IgA nephropathy. J Am Soc Nephrol. 2006;17(4):1192–9.

    Article  CAS  PubMed  Google Scholar 

  133. Niki T, Tsutsui S, Hirose S, Aradono S, Sugimoto Y, Takeshita K, et al. Galectin-9 is a high affinity IgE-binding lectin with anti-allergic effect by blocking IgE-antigen complex formation. J Biol Chem. 2009;284(47):32344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nakakita SI, Itoh A, Nakakita Y, Nonaka Y, Ogawa T, Nakamura T, et al. Cooperative interactions of oligosaccharide and peptide moieties of a glycopeptide derived from IgE with galectin-9. J Biol Chem. 2016;291(2):968–79.

    Article  CAS  PubMed  Google Scholar 

  135. Wright BL, Kulis M, Orgel KA, Burks AW, Dawson P, Henning AK, et al.. Component-resolved analysis of IgA, IgE, and IgG4 during egg OIT identifies markers associated with sustained unresponsiveness. Allergy 2016. doi:10.1111/all.12895.

  136. Jay DC, Nadeau KC. Immune mechanisms of sublingual immunotherapy. Curr Allergy Asthma Rep. 2014;14(11):1–7.

    Article  CAS  Google Scholar 

  137. Burton OT, Noval-Rivas M, Zhou JS, Logsdon SL, Darling AR, Koleoglou KJ, et al. Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells. Immunity. 2014;41(1):141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Allen LC, Kepley CL, Saxon A, Zhang K. Modifications to an Fcgamma-Fcepsilon fusion protein alter its effectiveness in the inhibition of FcepsilonRI-mediated functions. J Allergy Clin Immunol. 2007;120(2):462–8.

    Article  CAS  PubMed  Google Scholar 

  139. Tam SW, Demissie S, Thomas D, Daëron M. A bispecific antibody against human IgE and human FcgammaRII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy. 2004;59(7):772–80.

    Article  CAS  PubMed  Google Scholar 

  140. Finkelman FD, Khodoun MV, and Strait R. Human IgE-independent systemic anaphylaxis. J Allergy Clin Immunol. 2016;137(6):1674–80. doi:10.1016/j.jaci.2016.02.015.

  141. Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol. 2002;109(4):658–68.

    Article  CAS  PubMed  Google Scholar 

  142. Jönsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen N, et al. Mouse and human neutrophils induce anaphlaxis. J Clin Invest. 2011;121(4):1484–96. doi:10.1172/JCI45232.

  143. Beutier H, Gillis CM, Iannascoli B, Godon O, England P, Sibilano R, et al. IgG subclasses determine pathways of anaphylaxis in mice. J Allergy Clin Immunol. 2016;pii:S0091-6749(16)30158–0. doi:10.1016/j.jaci.2016.03.028.

  144. Khodoun MV, Strait R, Armstrong L, Yanase N, Finkelman FD. Identification of markers that distinguish IgE- from IgG-mediated anaphylaxis. Proc Natl Acad Sci U S A. 2011;108(30):12413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Strait.

Ethics declarations

Conflict of Interest

Dr. Herr is a consultant for Mapp Biopharmaceutical, Inc. Dr. Strait, Ms. Epp, and Ms. Sullivan declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epp, A., Sullivan, K.C., Herr, A.B. et al. Immunoglobulin Glycosylation Effects in Allergy and Immunity. Curr Allergy Asthma Rep 16, 79 (2016). https://doi.org/10.1007/s11882-016-0658-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0658-x

Keywords

Navigation