Log in

Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

  • Basic and Applied Science (PJ Bryce, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9:125–38.

    CAS  PubMed  Google Scholar 

  2. Marcel YL, Ouimet M, Wang MD. Regulation of cholesterol efflux from macrophages. Curr Opin Lipidol. 2008;19:455–61.

    CAS  PubMed  Google Scholar 

  3. Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J Immunol. 2011;187:1529–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Gautier EL, Huby T, Saint-Charles F, Ouzilleau B, Pirault J, Deswaerte V, et al. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis. Circulation. 2009;119:2367–75.

    CAS  PubMed  Google Scholar 

  5. Klingenberg R, Gerdes N, Badeau RM, Gistera A, Strodthoff D, Ketelhuth DF, et al. Depletion of Foxp3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest. 2013;123:1323–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Lo JC, Wang Y, Tumanov AV, Bamji M, Yao Z, Reardon CA, et al. Lymphotoxin beta receptor-dependent control of lipid homeostasis. Science. 2007;316:285–8.

    CAS  PubMed  Google Scholar 

  7. Heikkila HM, Trosien J, Metso J, Jauhiainen M, Pentikainen MO, Kovanen PT, et al. Mast cells promote atherosclerosis by inducing both an atherogenic lipid profile and vascular inflammation. J Cell Biochem. 2010;109:615–23.

    PubMed  Google Scholar 

  8. Robertson AK, Zhou X, Strandvik B, Hansson GK. Severe hypercholesterolaemia leads to strong Th2 responses to an exogenous antigen. Scand J Immunol. 2004;59:285–93.

    CAS  PubMed  Google Scholar 

  9. Zhou X, Paulsson G, Stemme S, Hansson GK. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest. 1998;101:1717–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Shamshiev AT, Ampenberger F, Ernst B, Rohrer L, Marsland BJ, Kopf M. Dyslipidemia inhibits Toll-like receptor-induced activation of CD8alpha-negative dendritic cells and protective Th1 type immunity. J Exp Med. 2007;204:441–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Maganto-Garcia E, Tarrio ML, Grabie N, Bu DX, Lichtman AH. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation. 2011;124:185–95.

    PubMed Central  PubMed  Google Scholar 

  12. Kolbus D, Ramos OH, Berg KE, Persson J, Wigren M, Bjorkbacka H, et al. CD8+ T cell activation predominate early immune responses to hypercholesterolemia in apoE (−)(/)(−) mice. BMC Immunol. 2010;11:58.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Chakrabarti R, Engleman EG. Interrelationships between mevalonate metabolism and the mitogenic signaling pathway in T lymphocyte proliferation. J Biol Chem. 1991;266:12216–22.

    CAS  PubMed  Google Scholar 

  14. Chen HW, Heiniger HJ, Kandutsch AA. Relationship between sterol synthesis and DNA synthesis in phytohemagglutinin-stimulated mouse lymphocytes. Proc Natl Acad Sci U S A. 1975;72:1950–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008;134:97–111.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 2013;14:489–99. The authors demonstrate a critical role for SREBP in blasting of CD8+ T cells as well as clonal expansion of T cells during viral infection.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T (reg)-cell function. Nature. 2013;499:485–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Armstrong AJ, Gebre AK, Parks JS, Hedrick CC. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J Immunol. 2010;184:173–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Wilhelm AJ, Zabalawi M, Grayson JM, Weant AE, Major AS, Owen J, et al. Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity. Arterioscler Thromb Vasc Biol. 2009;29:843–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Geyeregger R, Shehata M, Zeyda M, Kiefer FW, Stuhlmeier KM, Porpaczy E, et al. Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes. J Leukoc Biol. 2009;86:1039–48.

    CAS  PubMed  Google Scholar 

  21. Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q, et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest. 2011;121:658–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kumar N, Solt LA, Conkright JJ, Wang Y, Istrate MA, Busby SA, et al. The benzenesulfoamide t0901317 [n-(2,2,2-trifluoroethyl)-n-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethy l]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-alpha/gamma inverse agonist. Mol Pharmacol. 2010;77:228–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Solt LA, Kamenecka TM, Burris TP. LXR-mediated inhibition of CD4+ T helper cells. PLoS One. 2012;7:e46615.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Walcher D, Vasic D, Heinz P, Bach H, Durst R, Hausauer A, et al. LXR activation inhibits chemokine-induced CD4-positive lymphocyte migration. Basic Res Cardiol. 2010;105:487–94.

    CAS  PubMed  Google Scholar 

  25. Walcher D, Kummel A, Kehrle B, Bach H, Grub M, Durst R, et al. LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes. Arterioscler Thromb Vasc Biol. 2006;26:1022–8.

    CAS  PubMed  Google Scholar 

  26. Soroosh P, Wu J, Xue X, Song J, Sutton SW, Sablad M, et al. Oxysterols are agonist ligands of RORgammat and drive Th17 cell differentiation. Proc Natl Acad Sci U S A. 2014;111:12163–8. The authors identify several naturally occurring oxysterols as RORγt agonists and show that they promote Th17 polarization of T cells.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hu X, Wang Y, Hao L, Liu X, Lesch CA, Sanchez BM, et al. Sterol metabolism controls Th17 differentiation by generating endogenous RORgamma agonists. Nat Chem Biol. 2015;11(2):141–7. The authors report that during Th17 differentiation coordinated changes in cholesterol metabolism lead to accumulation of desmosterol, which functions as a potent endogenous RORγt agonist.

    CAS  PubMed  Google Scholar 

  28. Reboldi A, Dang EV, McDonald JG, Liang G, Russell DW, Cyster JG. Inflammation. 25-hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type i interferon. Science. 2014;345:679–84. The authors report that 25‐hydroxycholesterol suppresses production of IL‐1 family cytokines by broading inhibiting inflammasomes.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. He HT, Lellouch A, Marguet D. Lipid rafts and the initiation of T cell receptor signaling. Semin Immunol. 2005;17:23–33.

    CAS  PubMed  Google Scholar 

  30. Molnar E, Swamy M, Holzer M, Beck-Garcia K, Worch R, Thiele C, et al. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J Biol Chem. 2012;287:42664–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Janes PW, Ley SC, Magee AI. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol. 1999;147:447–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science. 1999;283:680–2.

    CAS  PubMed  Google Scholar 

  33. Chyu KY, Lio WM, Dimayuga PC, Zhou J, Zhao X, Yano J, et al. Cholesterol lowering modulates T cell function in vivo and in vitro. PLoS One. 2014;9:e92095.

    PubMed Central  PubMed  Google Scholar 

  34. Surls J, Nazarov-Stoica C, Kehl M, Olsen C, Casares S, Brumeanu TD. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response. PLoS One. 2012;7:e38733.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Cheng HY, Wu R, Gebre AK, Hanna RN, Smith DJ, Parks JS, et al. Increased cholesterol content in gammadelta (gammadelta) T lymphocytes differentially regulates their activation. PLoS One. 2013;8:e63746.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Sag D, Wingender G, Nowyhed H, Wu R, Gebre AK, Parks JS, et al. ATP-binding cassette transporter G1 intrinsically regulates invariant Nkt cell development. J Immunol. 2012;189:5129–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Heine G, Dahten A, Hilt K, Ernst D, Milovanovic M, Hartmann B, et al. Liver X receptors control IgE expression in B cells. J Immunol. 2009;182:5276–82.

    CAS  PubMed  Google Scholar 

  38. Chen Y, Duan Y, Kang Y, Yang X, Jiang M, Zhang L, et al. Activation of liver X receptor induces macrophage interleukin-5 expression. J Biol Chem. 2012;287:43340–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Park K, Scott AL. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J Leukoc Biol. 2010;88:1081–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin a production. Proc Natl Acad Sci U S A. 2009;106:16764–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, et al. Oxysterols direct immune cell migration via EBI2. Nature. 2011;475:524–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, et al. Oxysterols direct B-cell migration through EBI2. Nature. 2011;475:519–23.

    CAS  PubMed  Google Scholar 

  43. Pierce SK. Lipid rafts and B-cell activation. Nat Rev Immunol. 2002;2:96–105.

    CAS  PubMed  Google Scholar 

  44. Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol. 2007;18:616–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Karnell FG, Brezski RJ, King LB, Silverman MA, Monroe JG. Membrane cholesterol content accounts for developmental differences in surface B cell receptor compartmentalization and signaling. J Biol Chem. 2005;280:25621–8.

    CAS  PubMed  Google Scholar 

  46. Anderson HA, Hiltbold EM, Roche PA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol. 2000;1:156–62.

    CAS  PubMed  Google Scholar 

  47. Hiltbold EM, Poloso NJ, Roche PA. MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol. 2003;170:1329–38.

    CAS  PubMed  Google Scholar 

  48. Son Y, Kim SM, Lee SA, Eo SK, Kim K. Oxysterols induce transition of monocytic cells to phenotypically mature dendritic cell-like cells. Biochem Biophys Res Commun. 2013;438:161–8.

    CAS  PubMed  Google Scholar 

  49. Perrin-Cocon L, Coutant F, Agaugue S, Deforges S, Andre P, Lotteau V. Oxidized low-density lipoprotein promotes mature dendritic cell transition from differentiating monocyte. J Immunol. 2001;167:3785–91.

    CAS  PubMed  Google Scholar 

  50. Zhong L, Yang Q, **e W, Zhou J. Liver X receptor regulates mouse GM-CSF-derived dendritic cell differentiation in vitro. Mol Immunol. 2014;60:32–43.

    CAS  PubMed  Google Scholar 

  51. Feig JE, Pineda-Torra I, Sanson M, Bradley MN, Vengrenyuk Y, Bogunovic D, et al. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest. 2010;120:4415–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Torocsik D, Barath M, Benko S, Szeles L, Dezso B, Poliska S, et al. Activation of liver X receptor sensitizes human dendritic cells to inflammatory stimuli. J Immunol. 2010;184:5456–65.

    PubMed  Google Scholar 

  53. Geyeregger R, Zeyda M, Bauer W, Kriehuber E, Saemann MD, Zlabinger GJ, et al. Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood. 2007;109:4288–95.

    CAS  PubMed  Google Scholar 

  54. Kim KD, Lim HY, Lee HG, Yoon DY, Choe YK, Choi I, et al. Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun. 2005;338:1126–36.

    CAS  PubMed  Google Scholar 

  55. Perrin-Cocon L, Diaz O, Carreras M, Dollet S, Guironnet-Paquet A, Andre P, et al. High-density lipoprotein phospholipids interfere with dendritic cell Th1 functional maturation. Immunobiology. 2012;217:91–9.

    CAS  PubMed  Google Scholar 

  56. Angeli V, Llodra J, Rong JX, Satoh K, Ishii S, Shimizu T, et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity. 2004;21:561–74.

    CAS  PubMed  Google Scholar 

  57. Yi T, Cyster JG. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife. 2013;2, e00757.

    PubMed Central  PubMed  Google Scholar 

  58. Bosch B, Heipertz EL, Drake JR, Roche PA. Major histocompatibility complex (MHC) class II-peptide complexes arrive at the plasma membrane in cholesterol-rich microclusters. J Biol Chem. 2013;288:13236–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Roy K, Ghosh M, Pal TK, Chakrabarti S, Roy S. Cholesterol lowering drug may influence cellular immune response by altering MHC II function. J Lipid Res. 2013;54:3106–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Buatois V, Baillet M, Becart S, Mooney N, Leserman L, Machy P. MHC class II-peptide complexes in dendritic cell lipid microdomains initiate the CD4 TH1 phenotype. J Immunol. 2003;171:5812–9.

    CAS  PubMed  Google Scholar 

  61. Eren E, Yates J, Cwynarski K, Preston S, Dong R, Germain C, et al. Location of major histocompatibility complex class II molecules in rafts on dendritic cells enhances the efficiency of T-cell activation and proliferation. Scand J Immunol. 2006;63:7–16.

    CAS  PubMed  Google Scholar 

  62. Wang SH, Yuan SG, Peng DQ, Zhao SP. HDL and apoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells. Atherosclerosis. 2012;225:105–14.

    CAS  PubMed  Google Scholar 

  63. Kuipers HF, Biesta PJ, Groothuis TA, Neefjes JJ, Mommaas AM, van den Elsen PJ. Statins affect cell-surface expression of major histocompatibility complex class II molecules by disrupting cholesterol-containing microdomains. Hum Immunol. 2005;66:653–65.

    CAS  PubMed  Google Scholar 

  64. Kimata H. Cholesterol selectively enhances in vitro latex-specific IgE production in atopic dermatitis patients with latex allergy. Life Sci. 2005;76:1527–32.

    CAS  PubMed  Google Scholar 

  65. Ouyang F, Kumar R, Pongracic J, Story RE, Liu X, Wang B, et al. Adiposity, serum lipid levels, and allergic sensitization in Chinese men and women. J Allergy Clin Immunol. 2009;123:940–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kusunoki T, Morimoto T, Sakuma M, Mukaida K, Yasumi T, Nishikomori R, et al. Total and low-density lipoprotein cholesterol levels are associated with atopy in schoolchildren. J Pediatr. 2011;158:334–6.

    CAS  PubMed  Google Scholar 

  67. Pesonen M, Ranki A, Siimes MA, Kallio MJ. Serum cholesterol level in infancy is inversely associated with subsequent allergy in children and adolescents. A 20-year follow-up study. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2008;38:178–84.

    CAS  Google Scholar 

  68. Fessler MB, Jaramillo R, Crockett PW, Zeldin DC. Relationship of serum cholesterol levels to atopy in the US population. Allergy. 2010;65:859–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Yeh YF, Huang SL. Enhancing effect of dietary cholesterol and inhibitory effect of pravastatin on allergic pulmonary inflammation. J Biomed Sci. 2004;11:599–606.

    CAS  PubMed  Google Scholar 

  70. Chen YC, Tung KY, Tsai CH, Su MW, Wang PC, Chen CH, et al. Lipid profiles in children with and without asthma: interaction of asthma and obesity on hyperlipidemia. Diabetes Metab Syndr. 2013;7:20–5.

    PubMed  Google Scholar 

  71. Scichilone N, Rizzo M, Benfante A, Catania R, Giglio RV, Nikolic D, et al. Serum low density lipoprotein subclasses in asthma. Respir Med. 2013;107:1866–72.

    PubMed  Google Scholar 

  72. Fenger RV, Gonzalez-Quintela A, Linneberg A, Husemoen LL, Thuesen BH, Aadahl M, et al. The relationship of serum triglycerides, serum HDL, and obesity to the risk of wheezing in 85,555 adults. Respir Med. 2013;107:816–24.

    CAS  PubMed  Google Scholar 

  73. Cirillo DJ, Agrawal Y, Cassano PA. Lipids and pulmonary function in the third national health and nutrition examination survey. Am J Epidemiol. 2002;155:842–8.

    PubMed  Google Scholar 

  74. Yiallouros PK, Savva SC, Kolokotroni O, Dima K, Zerva A, Kouis P, et al. Asthma: the role of low high-density-lipoprotein cholesterol in childhood and adolescence. Int Arch Allergy Immunol. 2014;165:91–9.

    CAS  PubMed  Google Scholar 

  75. Fessler MB. Next stop for HDL: the lung. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2012;42:340–2.

    CAS  Google Scholar 

  76. Fessler MB, Massing MW, Spruell B, Jaramillo R, Draper DW, Madenspacher JH, et al. Novel relationship of serum cholesterol with asthma and wheeze in the United States. J Allergy Clin Immunol. 2009;124:967–74. e961-915.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Ho WE, Xu YJ, Xu F, Cheng C, Peh HY, Tannenbaum SR, et al. Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol. 2013;48:204–11.

    CAS  PubMed  Google Scholar 

  78. Dai C, Yao X, Keeran KJ, Zywicke GJ, Qu X, Yu ZX, et al. Apolipoprotein A-I attenuates ovalbumin-induced neutrophilic airway inflammation via a granulocyte colony-stimulating factor-dependent mechanism. Am J Respir Cell Mol Biol. 2012;47:186–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ekmekci OB, Donma O, Ekmekci H, Yildirim N, Uysal O, Sardogan E, et al. Plasma paraoxonase activities, lipoprotein oxidation, and trace element interaction in asthmatic patients. Biol Trace Elem Res. 2006;111:41–52.

    CAS  PubMed  Google Scholar 

  80. Nandedkar SD, Weihrauch D, Xu H, Shi Y, Feroah T, Hutchins W, et al. D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma. J Lipid Res. 2011;52:499–508.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Draper DW, Gowdy KM, Madenspacher JH, Wilson RH, Whitehead GS, Nakano H, et al. ATP binding cassette transporter G1 deletion induces IL-17-dependent dysregulation of pulmonary adaptive immunity. J Immunol. 2012;188:5327–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Wang W, Xu H, Shi Y, Nandedkar S, Zhang H, Gao H, et al. Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung. J Lipid Res. 2010;51:2560–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Otera H, Ishida T, Nishiuma T, Kobayashi K, Kotani Y, Yasuda T, et al. Targeted inactivation of endothelial lipase attenuates lung allergic inflammation through raising plasma HDL level and inhibiting eosinophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2009;296:L594–602.

    CAS  PubMed  Google Scholar 

  84. Fredriksson K, Mishra A, Lam JK, Mushaben EM, Cuento RA, Meyer KS, et al. The very low density lipoprotein receptor attenuates house dust mite-induced airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Immunol. 2014;192:4497–509.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Yao X, Fredriksson K, Yu ZX, Xu X, Raghavachari N, Keeran KJ, et al. Apolipoprotein e negatively regulates house dust mite-induced asthma via a low-density lipoprotein receptor-mediated pathway. Am J Respir Crit Care Med. 2010;182:1228–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Yao X, Dai C, Fredriksson K, Lam J, Gao M, Keeran KJ, et al. Human apolipoprotein e genotypes differentially modify house dust mite-induced airway disease in mice. Am J Physiol Lung Cell Mol Physiol. 2012;302:L206–215.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yao X, Dai C, Fredriksson K, Dagur PK, McCoy JP, Qu X, et al. 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma. J Immunol. 2011;186:576–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Shi Y, Xu X, Tan Y, Mao S, Fang S, Gu W. A liver-X-receptor ligand, T0901317, attenuates IgE production and airway remodeling in chronic asthma model of mice. PLoS One. 2014;9:e92668.

    PubMed Central  PubMed  Google Scholar 

  89. Fowler AJ, Sheu MY, Schmuth M, Kao J, Fluhr JW, Rhein L, et al. Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: liver-X-receptor-specific inhibition of inflammation and primary cytokine production. J Investig Dermatol. 2003;120:246–55.

    CAS  PubMed  Google Scholar 

  90. Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010;6:280–9.

    PubMed  Google Scholar 

  91. Rothlin CV, Lemke G. Tam receptor signaling and autoimmune disease. Curr Opin Immunol. 2010;22:740–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. N AG, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity. 2009;31:245–58.

    Google Scholar 

  93. Chintalacharuvu SR, Sandusky GE, Burris TP, Burmer GC, Nagpal S. Liver X receptor is a therapeutic target in collagen-induced arthritis. Arthritis Rheum. 2007;56:1365–7.

    CAS  PubMed  Google Scholar 

  94. Hindinger C, Hinton DR, Kirwin SJ, Atkinson RD, Burnett ME, Bergmann CC, et al. Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J Neurosci Res. 2006;84:1225–34.

    CAS  PubMed  Google Scholar 

  95. Xu J, Wagoner G, Douglas JC, Drew PD. Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity. J Leukoc Biol. 2009;86:401–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Yang H, Zheng S, Qiu Y, Yang Y, Wang C, Yang P, et al. Activation of liver X receptor alleviates ocular inflammation in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2014;55:2795–804.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Grainger DJ, Reckless J, McKilligin E. Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice. J Immunol. 2004;173:6366–75.

    CAS  PubMed  Google Scholar 

  98. Murao K, Terpstra V, Green SR, Kondratenko N, Steinberg D, Quehenberger O. Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem. 1997;272:17551–7.

    CAS  PubMed  Google Scholar 

  99. Feng H, Guo L, Wang D, Gao H, Hou G, Zheng Z, et al. Deficiency of scavenger receptor BI leads to impaired lymphocyte homeostasis and autoimmune disorders in mice. Arterioscler Thromb Vasc Biol. 2011;31:2543–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Hamon Y, Chambenoit O, Chimini G. ABCA1 and the engulfment of apoptotic cells. Biochim Biophys Acta. 2002;1585:64–71.

    CAS  PubMed  Google Scholar 

  101. Woo JM, Lin Z, Navab M, Van Dyck C, Trejo-Lopez Y, Woo KM, et al. Treatment with apolipoprotein A-1 mimetic peptide reduces lupus-like manifestations in a murine lupus model of accelerated atherosclerosis. Arthritis Res Ther. 2010;12:R93.

    PubMed Central  PubMed  Google Scholar 

  102. Morse JH, Witte LD, Goodman DS. Inhibition of lymphocyte proliferation stimulated by lectins and allogeneic cells by normal plasma lipoproteins. J Exp Med. 1977;146:1791–803.

    CAS  PubMed  Google Scholar 

  103. Charles-Schoeman C, Watanabe J, Lee YY, Furst DE, Amjadi S, Elashoff D, et al. Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. Arthritis Rheum. 2009;60:2870–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Svenungsson E, Gunnarsson I, Fei GZ, Lundberg IE, Klareskog L, Frostegard J. Elevated triglycerides and low levels of high-density lipoprotein as markers of disease activity in association with up-regulation of the tumor necrosis factor alpha/tumor necrosis factor receptor system in systemic lupus erythematosus. Arthritis Rheum. 2003;48:2533–40.

    CAS  PubMed  Google Scholar 

  105. Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab: TEM. 2012;23:169–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Chen Y, Park YB, Patel E, Silverman GJ. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol. 2009;182:6031–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Chen Y, Khanna S, Goodyear CS, Park YB, Raz E, Thiel S, et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol. 2009;183:1346–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Flores-Borja F, Kabouridis PS, Jury EC, Isenberg DA, Mageed RA. Decreased lyn expression and translocation to lipid raft signaling domains in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum. 2005;52:3955–65.

    CAS  PubMed  Google Scholar 

  109. Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol. 2007;18:608–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Krishnan S, Nambiar MP, Warke VG, Fisher CU, Mitchell J, Delaney N, et al. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J Immunol. 2004;172:7821–31.

    CAS  PubMed  Google Scholar 

  111. Jury EC, Isenberg DA, Mauri C, Ehrenstein MR. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. J Immunol. 2006;177:7416–22.

    CAS  PubMed  Google Scholar 

  112. McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, et al. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest. 2014;124:712–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med. 2001;7:687–92.

    CAS  PubMed  Google Scholar 

  114. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420:78–84.

    CAS  PubMed  Google Scholar 

  115. Ulivieri C, Baldari CT. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol Res: Off J Ital Pharmacol Soc. 2014;88:41–52.

    CAS  Google Scholar 

  116. Ghittoni R, Napolitani G, Benati D, Ulivieri C, Patrussi L, Laghi Pasini F, et al. Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. Eur J Immunol. 2006;36:2885–93.

    CAS  PubMed  Google Scholar 

  117. Ulivieri C, Fanigliulo D, Benati D, Pasini FL, Baldari CT. Simvastatin impairs humoral and cell-mediated immunity in mice by inhibiting lymphocyte homing, T-cell activation and antigen cross-presentation. Eur J Immunol. 2008;38:2832–44.

    CAS  PubMed  Google Scholar 

  118. Arora M, Chen L, Paglia M, Gallagher I, Allen JE, Vyas YM, et al. Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proc Natl Acad Sci U S A. 2006;103:7777–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS, Zamvil SS, et al. Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J Exp Med. 2006;203:401–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Blank N, Schiller M, Krienke S, Busse F, Schatz B, Ho AD, et al. Atorvastatin inhibits T cell activation through 3-hydroxy-3-methylglutaryl coenzyme a reductase without decreasing cholesterol synthesis. J Immunol. 2007;179:3613–21.

    CAS  PubMed  Google Scholar 

  121. Hakamada-Taguchi R, Uehara Y, Kuribayashi K, Numabe A, Saito K, Negoro H, et al. Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circ Res. 2003;93:948–56.

    CAS  PubMed  Google Scholar 

  122. Hillyard DZ, Cameron AJ, McDonald KJ, Thomson J, MacIntyre A, Shiels PG, et al. Simvastatin inhibits lymphocyte function in normal subjects and patients with cardiovascular disease. Atherosclerosis. 2004;175:305–13.

    CAS  PubMed  Google Scholar 

  123. Coward W, Chow SC. Effect of atorvastatin on Th1 and Th2 cytokine secreting cells during T cell activation and differentiation. Atherosclerosis. 2006;186:302–9.

    CAS  PubMed  Google Scholar 

  124. Fehr T, Kahlert C, Fierz W, Joller-Jemelka HI, Riesen WF, Rickli H, et al. Statin-induced immunomodulatory effects on human T cells in vivo. Atherosclerosis. 2004;175:83–90.

    CAS  PubMed  Google Scholar 

  125. Zhang X, ** J, Peng X, Ramgolam VS, Markovic-Plese S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORc in CD4+ lymphocytes. J Immunol. 2008;180:6988–96.

    CAS  PubMed  Google Scholar 

  126. Zhang X, Tao Y, Wang J, Garcia-Mata R, Markovic-Plese S. Simvastatin inhibits secretion of Th17-polarizing cytokines and antigen presentation by DCs in patients with relapsing remitting multiple sclerosis. Eur J Immunol. 2013;43:281–9.

    CAS  PubMed  Google Scholar 

  127. Kim YC, Kim KK, Shevach EM. Simvastatin induces Foxp3+ T regulatory cells by modulation of transforming growth factor-beta signal transduction. Immunology. 2010;130:484–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Maneechotesuwan K, Kasetsinsombat K, Wamanutta**da V, Wongkajornsilp A, Barnes PJ. Statins enhance the effects of corticosteroids on the balance between regulatory T cells and Th17 cells. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2013;43:212–22.

    CAS  Google Scholar 

  129. Robinson AJ, Kashanin D, O’Dowd F, Fitzgerald K, Williams V, Walsh GM. Fluvastatin and lovastatin inhibit granulocyte macrophage-colony stimulating factor-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2009;39:1866–74.

    CAS  Google Scholar 

  130. Krauth MT, Majlesi Y, Sonneck K, Samorapoompichit P, Ghannadan M, Hauswirth AW, et al. Effects of various statins on cytokine-dependent growth and IgE-dependent release of histamine in human mast cells. Allergy. 2006;61:281–8.

    CAS  PubMed  Google Scholar 

  131. Schaafsma D, Dueck G, Ghavami S, Kroeker A, Mutawe MM, Hauff K, et al. The mevalonate cascade as a target to suppress extracellular matrix synthesis by human airway smooth muscle. Am J Respir Cell Mol Biol. 2011;44:394–403.

    CAS  PubMed  Google Scholar 

  132. Schaafsma D, McNeill KD, Mutawe MM, Ghavami S, Unruh H, Jacques E, et al. Simvastatin inhibits TGFbeta1-induced fibronectin in human airway fibroblasts. Respir Res. 2011;12:113.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Takeda N, Kondo M, Ito S, Ito Y, Shimokata K, Kume H. Role of RhoA inactivation in reduced cell proliferation of human airway smooth muscle by simvastatin. Am J Respir Cell Mol Biol. 2006;35:722–9.

    CAS  PubMed  Google Scholar 

  134. Chiba Y, Sato S, Misawa M. Inhibition of antigen-induced bronchial smooth muscle hyperresponsiveness by lovastatin in mice. J Smooth Muscle Res = Nihon Heikatsukin Gakkai kikanshi. 2008;44:123–8.

    PubMed  Google Scholar 

  135. Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY. Anti-inflammatory mechanism of simvastatin in mouse allergic asthma model. Eur J Pharmacol. 2007;557:76–86.

    CAS  PubMed  Google Scholar 

  136. McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY. A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J Immunol. 2004;172:2903–8.

    CAS  PubMed  Google Scholar 

  137. Zeki AA, Franzi L, Last J, Kenyon NJ. Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. Am J Respir Crit Care Med. 2009;180:731–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Imamura M, Okunishi K, Ohtsu H, Nakagome K, Harada H, Tanaka R, et al. Pravastatin attenuates allergic airway inflammation by suppressing antigen sensitisation, interleukin 17 production and antigen presentation in the lung. Thorax. 2009;64:44–9.

    CAS  PubMed  Google Scholar 

  139. Huang CF, Peng HJ, Wu CC, Lo WT, Shih YL, Wu TC. Effect of oral administration with pravastatin and atorvastatin on airway hyperresponsiveness and allergic reactions in asthmatic mice. Ann Allergy, Asthma Immunol: Off Publ Am Coll Allergy Asthma Immunol. 2013;110:11–7.

    CAS  Google Scholar 

  140. Xu L, Dong XW, Shen LL, Li FF, Jiang JX, Cao R, et al. Simvastatin delivery via inhalation attenuates airway inflammation in a murine model of asthma. Int Immunopharmacol. 2012;12:556–64.

    CAS  PubMed  Google Scholar 

  141. Zeki AA, Bratt JM, Rabowsky M, Last JA, Kenyon NJ. Simvastatin inhibits goblet cell hyperplasia and lung arginase in a mouse model of allergic asthma: a novel treatment for airway remodeling? Transl Res: J Lab Clin Med. 2010;156:335–49.

    CAS  Google Scholar 

  142. Silva D, Couto M, Delgado L, Moreira A. A systematic review of statin efficacy in asthma. J Asthma : Off J Assoc Care Asthma. 2012;49:885–94.

    CAS  Google Scholar 

  143. Si XB, Zhang S, Huo LY, Dai WL, Wang HL. Statin therapy does not improve lung function in asthma: a meta-analysis of randomized controlled trials. J Int Med Res. 2013;41:276–83.

    CAS  PubMed  Google Scholar 

  144. Naidoo D, Wu AC, Brilliant MH, Denny J, Ingram C, Kitchner TE, et al. A polymorphism in HLA-G modifies statin benefit in asthma. Pharmacogenomics J. 2015;15:272–7.

    CAS  PubMed  Google Scholar 

  145. Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6:358–70.

    CAS  PubMed  Google Scholar 

  146. McCarey DW, McInnes IB, Madhok R, Hampson R, Scherbakov O, Ford I, et al. Trial of atorvastatin in rheumatoid arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet. 2004;363:2015–21.

    CAS  PubMed  Google Scholar 

  147. Lv S, Liu Y, Zou Z, Li F, Zhao S, Shi R, et al. The impact of statins therapy on disease activity and inflammatory factor in patients with rheumatoid arthritis: a meta-analysis. Clin Exp Rheumatol. 2014;33:69–76.

    PubMed  Google Scholar 

  148. Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Markovic-Plese S, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet. 2004;363:1607–8.

    CAS  PubMed  Google Scholar 

  149. Sena A, Pedrosa R, Graca MM. Therapeutic potential of lovastatin in multiple sclerosis. J Neurol. 2003;250:754–5.

    CAS  PubMed  Google Scholar 

  150. Gkaliagkousi E, Gavriilaki E, Doumas M, Petidis K, Aslanidis S, Stella D. Cardiovascular risk in rheumatoid arthritis: pathogenesis, diagnosis, and management. J Clin Rheumatol: Pract Rep Rheum Musculoskelet Dis. 2012;18:422–30.

    Google Scholar 

  151. Tu H, Li Q, **ang S, Jiang H, Mao Y, Shou Z, et al. Dual effects of statins therapy in systemic lupus erythematosus and SLE-related atherosclerosis: the potential role for regulatory T cells. Atherosclerosis. 2012;222:29–33.

    CAS  PubMed  Google Scholar 

  152. Lokhandwala T, West-Strum D, Banahan BF, Bentley JP, Yang Y. Do statins improve outcomes in patients with asthma on inhaled corticosteroid therapy? A retrospective cohort analysis. BMJ open. 2012;2.

  153. Zeki AA, Oldham J, Wilson M, Fortenko O, Goyal V, Last M, et al. Statin use and asthma control in patients with severe asthma. BMJ open. 2013;3.

  154. Huang CC, Chan WL, Chen YC, Chen TJ, Chou KT, Lin SJ, et al. Statin use in patients with asthma: a nationwide population-based study. Eur J Clin Investig. 2011;41:507–12.

    Google Scholar 

  155. Ostroukhova M, Kouides RW, Friedman E. The effect of statin therapy on allergic patients with asthma. Ann Allergy Asthma Immunol: Off Publ Am Coll Allergy Asthma Immunol. 2009;103:463–8.

    CAS  Google Scholar 

  156. Tse SM, Li L, Butler MG, Fung V, Kharbanda EO, Larkin EK, et al. Statin exposure is associated with decreased asthma-related emergency department visits and oral corticosteroid use. Am J Respir Crit Care Med. 2013;188:1076–82.

    PubMed Central  PubMed  Google Scholar 

  157. Tse SM, Charland SL, Stanek E, Herrera V, Goldfarb S, Litonjua AA, et al. Statin use in asthmatics on inhaled corticosteroids is associated with decreased risk of emergency department visits. Curr Med Res Opin. 2014;30:685–93.

    CAS  PubMed  Google Scholar 

  158. Braganza G, Chaudhuri R, McSharry C, Weir CJ, Donnelly I, Jolly L, et al. Effects of short-term treatment with atorvastatin in smokers with asthma—a randomized controlled trial. BMC Pulm Med. 2011;11:16.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Maneechotesuwan K, Ekjiratrakul W, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Statins enhance the anti-inflammatory effects of inhaled corticosteroids in asthmatic patients through increased induction of indoleamine 2, 3-dioxygenase. J Allergy Clin Immunol. 2010;126:754–62.

    CAS  PubMed  Google Scholar 

  160. Menzies D, Nair A, Meldrum KT, Fleming D, Barnes M, Lipworth BJ. Simvastatin does not exhibit therapeutic anti-inflammatory effects in asthma. J Allergy Clin Immunol. 2007;119:328–35.

    CAS  PubMed  Google Scholar 

  161. Moini A, Azimi G, Farivar A. Evaluation of atorvastatin for the treatment of patients with asthma: a double-blind randomized clinical trial. Allergy Asthma Immunol Res. 2012;4:290–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Hothersall EJ, Chaudhuri R, McSharry C, Donnelly I, Lafferty J, McMahon AD, et al. Effects of atorvastatin added to inhaled corticosteroids on lung function and sputum cell counts in atopic asthma. Thorax. 2008;63:1070–5.

    CAS  PubMed  Google Scholar 

  163. Cowan DC, Cowan JO, Palmay R, Williamson A, Taylor DR. Simvastatin in the treatment of asthma: lack of steroid-sparing effect. Thorax. 2010;65:891–6.

    PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Sue Edelstein for assistance with figure production. This work was supported by the National Institutes of Health, National Institute of Environmental Health Sciences (Z01 ES102005).

Compliance with Ethics Guidelines

Conflict of Interest

Michael B. Fessler declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Fessler.

Additional information

This work was supported by the National Institutes of Health, National Institute of Environmental Health Sciences (Z01 ES102005).

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fessler, M.B. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism. Curr Allergy Asthma Rep 15, 48 (2015). https://doi.org/10.1007/s11882-015-0548-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0548-7

Keywords

Navigation