Log in

Moss bag sensitivity for the assessment of airborne elements at suburban background site during spring/summer season characterized by Saharan dust intrusions

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Moss transplants of Hypnum cupressiforme and Sphagnum girgensohnii were tested for efficiency in detection of airborne element pollution at a suburban background site during short time exposure of 15 days (twelve consecutive periods) and during prolonged exposure from one to six months. Concomitantly, particulate matter (PM10, PM2.5) was sampled during three identified Saharan dust episodes, while MERRA-2 data were used for estimation of dust concentration at ground level to which the moss bags were exposed during 15-day periods. The concentrations of 22 potentially toxic elements were measured in the moss and PM10 samples. The results showed that 15-day bag exposure at the background location could not provide a measurable and reliable signature of the elements in the moss transplants, except for Al, V, As, Ga, Y, and Tb, unlike the extended moss bag exposure of a couple of months. These were also the only elements whose concentrations were increased multifold in PM10 samples during the most intense dust episode, which was also recorded by S. girgensohnii bags exposed in the corresponding 15-day period. The ratio of crustal elements (Ca/Al, Mg/Al) in PM10 and moss samples (3-month exposed) was in line of those reported for dust transported from western Africa. The V/Al, Ga/Al, and Tb/Al concentration ratio values in PM10 and S. girgensohnii samples were higher for dust days contrary to the As/Al ratio, which could be used to distinguish between dust and fossil fuel combustion pollution sources. The moss bag technique could be used as a simple tool for tracking long-range transported elements, but after prolonged moss bag exposure (3 months).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamo P, Giordano S, Sforza A, Bargagli R (2011) Implementation of air-borne trace element monitoring with devitalised transplants of Hypnum cupressiforme Hedw.: assessment of temporal trends and element contribution by vehicular traffic in Naples city. Environ Pollut 159:1620–1628

    Article  CAS  Google Scholar 

  • Ajtai N, Stefanie H, Mereut A, Radovici A, Botezan C (2020) Multi-Sensor Observation of a Saharan Dust Outbreak over Transylvania, Romania in April 2019. Atmosphere 11:364–378

    Article  Google Scholar 

  • Alastuey A, Querol X, Aas W, Lucarelli F, Pérez N, Moreno T, Cavalli F, Areskoug H, Balan V, Catrambone M, Ceburnis D, Cerro JC, Conil S, Gevorgyan L, Hueglin C, Imre K, Jaffrezo J-L, Leeson SR, Mihalopoulos N, Mitosinkova M, O’Dowd CD, Pey J, Putaud J-P, Riffault V, Ripoll A, Sciare J, Sellegri K, Spindler G, Yttri KE (2016) Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013. Atmos Chem Phys 16:6107–6129

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK (2009) Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmos Environ 43:2770–2780

    Article  CAS  Google Scholar 

  • Amato F, Alastuey A, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Severi M, Becagli S, Gianelle VL, Colombi C, Alves C, Custódio D, Nunes T, Cerqueira M, Pio C, Eleftheriadis K, Diapouli E, Reche C, Minguillón MC, Manousakas MI, Maggos T, Vratolis S, Harrison RM, Querol X (2016) AIRUSE-LIFE: a harmonized PM speciation and source apportionment in five southern European cities. Atmos Chem Phys 16:3289–3309

    Article  CAS  Google Scholar 

  • Aničić M, Frontasyeva MV, Tomašević M, Popović A (2007) Assessment of atmospheric deposition of heavy metals and other elements in Belgrade using moss biomonitoring technique and neutron activation analysis. Environ Monit Assess 129:207–219

    Article  CAS  Google Scholar 

  • Aničić M, Tomašević M, Tasić M, Rajšić S, Popović A, Frontasyeva MV, Lierhagen S, Steinnes E (2009a) Monitoring of trace element atmospheric deposition using dry and wet moss bags: Accumulation capacity versus exposure time. J Haz Mat 171:182–188

    Article  CAS  Google Scholar 

  • Aničić M, Tasić M, Frontasyeva MV, Tomašević M, Rajšić S, Mijić Z, Popović A (2009b) Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade Serbia. Environ Pollut 157:673–679

    Article  CAS  Google Scholar 

  • Aničić Urošević M, Vuković G, Jovanović P, Vujičić M, Sabovljević A, Sabovljević M, Tomašević M (2017a) Urban background of air pollution – Evaluation through moss bag biomonitoring of trace elements in Botanical garden. Urban for Urban Green 25:1–10

    Article  Google Scholar 

  • Aničić Urošević M, Vuković G, Tomašević M (2017b) Biomonitoring of Air Pollution Using Mosses and Lichens, A Passive and Active Approach, State of the Art Research and Perspectives. Nova Science Publishers, New York (978-1-53610-212-3)

    Google Scholar 

  • Aničić Urošević M, Milićević T (2020) Moss bag biomonitoring of airborne pollutants as an ecosustainable tool for air protection management: Urban vs. agricultural scenario, Editors: Vertika Shukla and Narendra Kumar, Springer, pp 29 – 60

  • Ares Á, Fernández JA, Aboal JR, Carballeira A (2011) Study of the air quality in industrial areas of Santa Cruz de Tenerife (Spain) by active biomonitoring with Pseudoscleropodium purum. Ecotox Environ Safe 74:533–541

    Article  CAS  Google Scholar 

  • Ares Á, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernández JA (2012) Moss bag biomonitoring: a methodological review. Sci Total Environ 432:143–158

    Article  CAS  Google Scholar 

  • Ares Á, Aboal JR, Carballeira A, Fernández JA (2015) Do moss bags containing devitalized Sphagnum denticulatum reflect heavy metal concentrations in bulk deposition? Ecol Indic 50:90–98

    Article  CAS  Google Scholar 

  • Bargagli R, Brown DH, Nelli L (1995) Moss biomonitoring with moss: Procedures for correcting for soil contamination. Environ Pollut 89:169–175

    Article  CAS  Google Scholar 

  • Berg T, Steinnes E (1997) Use of mosses (Hylocomium splendens and Pleurozium schreberi) as bio-monitors of heavy metal deposition: from relative to absolute deposition values. Environ Pollut 98:61–71

    Article  CAS  Google Scholar 

  • Berg T, Røyset O, Steinnes E (1994) Trace elements in atmospheric precipitation at Norwegian background stations (1989–1990) measured by ICP-MS. Atmos Environ 28(21):3519–3536

    Article  CAS  Google Scholar 

  • Bergamaschi L, Rizzio E, Valcuvia MG, Verza G, Profumo A, Gallorini M (2002) Determination of trace elements and evaluation of their enrichment factors in Himalayan lichens. Environ Pollut 120:137–144

    Article  CAS  Google Scholar 

  • Brown D (1982) Mineral nutrition, Bryophyte Ecology. Springer, pp 383–444

    Book  Google Scholar 

  • Capozzi F, Giordano S, Di Palma A, Spagnuolo V, de Nicola F, Adamo P (2016a) Biomonitoring of atmospheric pollution by moss bags: discriminating urban-rural structure in a fragmented landscape. Chemosphere 149:211–219

    Article  CAS  Google Scholar 

  • Capozzi F, Giordano S, Aboal RJ, Adamo P, Bargagli R, Boquete T, Di Palma A, Real C, Reski R, Spagnuolo V, Steinbauer K, Tretiach M, Varela Z, Zechmeister H, Fernandez AJ (2016b) Best options for the exposure of traditional and innovative moss bags: a systematic evaluation in three European countries. Environ Pollut 214:362–373

    Article  CAS  Google Scholar 

  • Čeburnis D, Valiulis D (1999) Investigation of absolute metal uptake efficiency from precipitation in moss. Sci Total Environ 226(2–3):247–253

    Article  Google Scholar 

  • Cohen A, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA III, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918

    Article  Google Scholar 

  • Culicov OA, Yurukova L (2006) Comparison of element accumulation of different moss and lichen-bags, exposed in the city of Sofia (Bulgaria). J Atmos Chem 55:1–12

    Article  CAS  Google Scholar 

  • Dangić A, Dangić J (2007) Arsenic in the soil environment of central Balkan Peninsula, southeastern Europe: occurrence, geochemistry, and impact. In: Bhattacharya, P, Mukherjee, B.B.A, Bundschuh, J, Zevenhoven, R, Loeppert, H.R. (Eds.), Arsenic in Soil and Groundwater Environment; Trace Metals and other Contaminants in the Environments 9, pp 207–236

  • De Agostini A, Cortis P, Cogoni A (2020) Monitoring of Air Pollution by Moss Bags around an Oil Refinery: A Critical Evaluation over 16 Years. Atmosphere 11(3):272–286

    Article  CAS  Google Scholar 

  • DEFRA—Department for Environment, Food and Rural Affairs (2014) Air Pollution Background Concentration Maps: A User Guide for Local Authorities, http://laqm.defra

  • Demková L, Bobulská L, Árvay J, Jezný T, Ducsay L (2017) Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia). J Environ Sci Health A Tox Hazard Subst Environ Eng 52(1):30–36

    Article  CAS  Google Scholar 

  • Dimitriou K, Kassomenos P (2018) Day by day evolution of a vigorous two wave Saharan dust storm – Thermal and air quality impacts. Atmósfera 31(2):105–124

    Article  CAS  Google Scholar 

  • Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air and cleaner air for Europe, Official Journal of the European Union, 1–44 (11/06/2008)

  • EEA (European Environment Agency) (2019) Air Quality in Europe - 2019 report, EEA Report No 10/2019 https://www.eea.europa.eu/publications/air-quality-in-europe-2019

  • EN 12341 (2014) Ambient air. Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter, Comite Europeen de Normalisation, https://infostore.saiglobal.com/en-us/Standards/EN-12341-2014-343607_SAIG_CEN_CEN_786527/

  • Ganor E, Osetinsky I, Stupp A, Alpert P (2010) Increasing trend of African dust, over 49 years, in the eastern Mediterranean. J Geophys Res 115(D7):1–7

    Google Scholar 

  • Glime JM (2017) Water Relations: Movement. Chapt. 7–2. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological 7–2–1 Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated: 17 July 2020, http://digitalcommons.mtu.edu/bryophyte-ecology/

  • Gómez-Losada Á, Pires JCM, Pino-Mejías R (2018) Modelling background air pollution exposure in urban environments: Implications for epidemiological research. Environ Modell Softw 106:13–21

    Article  Google Scholar 

  • González GA, Pokrovsky SO (2014) Metal adsorption on mosses: Toward a universal adsorption model. J Colloid Interface Sci 415:169–178

    Article  CAS  Google Scholar 

  • Goodman GT, Roberts TM (1971) Plants and Soils as Indicators of Metals in the Air. Nature 231(5301):287–292

    Article  CAS  Google Scholar 

  • Harrison RM, Hester RE (2009) Air Quality in Urban Environments, Issues in Environmental Science and Technology, Royal Society of Chemistry Publishing, Cambridge, UK

  • Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan J, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET–A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16

    Article  Google Scholar 

  • Hu R, Yan Y, Zhou X, Wang Y, Fang Y (2018) Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China. Int J Environ Res Public Health 15(2):374–386

    Article  CAS  Google Scholar 

  • Israelevich P, Ganor E, Alpert P, Kishcha P, Stupp A (2012) Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. J Geophys Res: Atmospheres 117(D2):1–11

    Google Scholar 

  • Kabata-Pendias A (2010) Trace Elements in Soils and Plants (4th ed.). CRC Press, https://doi.org/10.1201/b10158

  • Mach T, Rogula-Kozłowska W, Bralewska K, Majewski G, Rogula-Kopiec P, Rybak J (2021) Impact of Municipal, Road Traffic, and Natural Sources on PM10: The Hourly Variability at a Rural Site in Poland. Energies 14:2654–2677

    Article  CAS  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Definitions, strategies and principles for bioindications/biomonitoring of the environment. In: Breure AM, Zechmeister HG (eds) Markert BA. Bioindicators & Biomonitors, Elsevier Science Ltd, pp 3–41

    Google Scholar 

  • Mason B (1966) Principles of Geochemistry. Wiley, New York

    Google Scholar 

  • Milićević T, Aničić Urošević M, Vuković G, Škrivanj S, Relić D, Frontasyeva MV, Popović A (2017) Assessment of species-specific and temporal variations of major, trace and rare earth elements in vineyard ambient using moss bags. Ecotox Environ Saf 144:208–215

    Article  CAS  Google Scholar 

  • Milićević T, Aničić Urošević M, Relić D, Jovanović G, Nikolić D, Vergel K, Popović A (2021) Environmental pollution influence to soil-plant–air system in organic vineyard: bioavailability, environmental, and health risk assessment. Environ Sci Pollut Res 28:3361–3374

    Article  CAS  Google Scholar 

  • Milićević T (2018) An integrated approach to the investigation of potentially toxic elements and magnetic particles in the soil−plant−air system: bioavailability and biomonitoring, Doctoral Dissertation, UDC number: 504, Faculty of Chemistry, University of Belgrade, Republic of Serbia

  • Mohamed J (2014) Moss – Classification, Development and Growth and Functional Role, In Ecosystem. Nova Science Publishers, New York

    Google Scholar 

  • Moreno T, Querol X, Castillo S, Alastuey A, Cuevas E, Herrmann L, Mounkaila M, Elvira J, Gibbons W (2006) Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. Chemosphere 65:261–270

    Article  CAS  Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9(4):269–298

    Article  CAS  Google Scholar 

  • Pulles T, Denier van der Gon H, Appelman W, Verheul M (2012) Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos Environ 61:641–651

    Article  CAS  Google Scholar 

  • Querol X, Tobías A, Pérez N, Karanasiou A, Amato F, Stafoggia M, Pérez García-Pandoc C, Ginouxd P, Forastieree F, Gumye S, Mudue P, Alastuey A (2019) Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ Internat 130:104867

    Article  CAS  Google Scholar 

  • Randles C, Da Silva A, Buchard V, Colarco P, Darmenov A, Govindaraju R, Smirnov A, Holben B, Ferrare R, Hair J (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J Climate 30:6823–6850

    Article  CAS  Google Scholar 

  • Remoundaki E, Bourliva A, Kokkalis P, Mamouri RE, Papayannis A, Grigoratos T, Samara C, Tsezos M (2011) PM10 composition during an intense Saharan dust transport event over Athens (Greece). Sci Total Environ 409:4361–4372

    Article  CAS  Google Scholar 

  • Rodrı́guez S, Querol X, Alastuey A, Kallos G, Kakaliagou O (2001) Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmos Environ 35(14):2433–2447

  • Rühling Å, Tyler G (1969) Ecology of Heavy Metals—A Regional and Historical Study. Bot Notis 22: 248–259 Salo H, Mäkinen KJ (2014) Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland. Atmos Environ 97:19–27

    Google Scholar 

  • Salo H, Mäkinen KJ (2019) Comparison of traditional moss bags and synthetic fabric bags in magnetic monitoring of urban air pollution. Ecol Indic 104:559–566

    Article  CAS  Google Scholar 

  • Scheuvens D, Schütz L, Kandler K, Ebert M, Weinbruch S (2013) Bulk composition of northern African dust and its source sediments–A compilation. Earth-Sci Rev 116:170–194

    Article  CAS  Google Scholar 

  • Spagnuolo V, Zampella M, Giordano S, Adamo P (2011) Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotox Environ Safe 74:1434–1443

    Article  CAS  Google Scholar 

  • Stojić A, Stanišić Stojić S, Rel** I, Čabarkapa M, Šoštarić A, Perišić M, Mijić Z (2016) Comprehensive analysis of PM10 in Belgrade urban area on the basis of long-term measurements. Environ Sci Pollut Res 23:10722–10732

  • Terradellas E, Basart S, Cuevas E (2016) Airborne dust: From R&D to Operational forecast. AEMET, Madrid, NIPO: 281-16-007-3; WMO, Geneva, WMO/GAW Report No. 230; WMO/WWRP No. 2016-2

  • Tretiach M, Pittao E, Crisafulli P, Adamo P (2011) Influence of exposure sites on trace element enrichment in moss-bags and characterisation of particles deposited on the biomonitor surface. Sci Total Environ 409:822–830

    Article  CAS  Google Scholar 

  • Unkašević M, Mališić J, Tošić I (1999) Some aspects of the wind “Košava” in the lower troposphere over Belgrade. Meteorol Appl 6:69–80

    Article  Google Scholar 

  • Varela Z, Fernández JA, Real C, Carballeira A, Aboal JR (2015) Influence of the physicochemical characteristics of pollutants on their uptake in moss. Atmos Environ 102:130–135

    Article  CAS  Google Scholar 

  • Vuković G, Aničić Urošević M, Goryainova Z, Pergal M, Škrivanj S, Samson R, Popović A (2015) Active moss biomonitoring for extensive screening of urban air pollution: Magnetic and chemical analyses. Sci Total Environ 521–522:200–210

    Article  CAS  Google Scholar 

  • Vuković G, Aničić Urošević M, Škrivanj S, Milićević T, Dimitrijević D, Tomašević M, Popović A (2016) Moss bag biomonitoring of airborne toxic element decrease on a small scale: A street study in Belgrade. Serbia, Sci Total Environ 542:394–403

    Article  CAS  Google Scholar 

  • Wang X, Sato S, **ng B, Tamamura S, Tao S (2005) Source identification, size distribution and indicator screening of airborne trace metals in Kanayawa, Japan. J Aerosol Sci 36:197–210

    Article  CAS  Google Scholar 

  • World Health Organisation (WHO) (2016) Ambient air pollution: A global assessment of exposure and burden of disease Technical report, ISBN: 9789241511353 www.who.int/phe/publications/air-pollution-global-assessment/en/

  • Zechmeister HG (1995) Growth rates of five pleurocarpus moss species under various climatic conditions. J Bryol 18:455–468

    Article  Google Scholar 

  • Zhou S, Cong L, Liu Y, **e L, Zhao S, Zhang Z (2021) Rainfall intensity plays an important role in the removal of PM from the leaf surfaces. Ecol Indic 128:107778–107787

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding provided by the Institute of Physics Belgrade and Faculty of Chemistry, through the grants by the Ministry of Education and Science of the Republic of Serbia (Institute of Physics Belgrade document: 0801-116/1 and Faculty of Chemistry contract number: 451-03-68/2020-14/200168), and bilateral cooperation between Institute of Physics Belgrade and Joint Institute for Nuclear Research, Dubna, Russia. The MERRA-2 data used in this study have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Aničić Urošević.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sitography:

Republic Hydrometeorological Service of Serbia, http://www.hidmet.gov.rs/eng/meteorologija/klimatologija_srbije.php

MODIS Aerosol products: https://worldview.earthdata.nasa.gov.

NASA’s Global Modeling and Assimilation Office (GMAO): https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aničić Urošević, M., Kuzmanoski, M., Milićević, T. et al. Moss bag sensitivity for the assessment of airborne elements at suburban background site during spring/summer season characterized by Saharan dust intrusions. Air Qual Atmos Health 15, 1357–1377 (2022). https://doi.org/10.1007/s11869-022-01161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-022-01161-8

Keywords

Navigation