Log in

Fractional heat equation with singular nonlinearity

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

Our aim in this paper is to analyze the existence and regularity of solutions for the following nonlocal parabolic problem involving the fractional Laplacian with singular nonlinearity

$$\begin{aligned} \left\{ \begin{array}{rlll} u_t+(-\Delta )^{s} u &{}=\frac{f(x,t)}{u^{\gamma }} &{} \text{ in } \Omega _T:=\Omega \times (0,T),\\ u &{}=0 &{} \text{ in } ({\mathbb {R}}^{N}\backslash \Omega )\times (0,T),\\ u(\cdot ,0)&{}=u_0(\cdot ) &{} \text{ in } \Omega , \end{array} \right. \end{aligned}$$

where \(\Omega \) is a bounded domain of class \({\mathcal {C}}^{0,1}\) in \({\mathbb {R}}^{N}\), \(N>2s\) with \(s\in (0,1)\), \(\gamma >0\), \(0<T<+\infty \), \(f\ge 0\), \(f\in L^{m}(\Omega _T)\), \(m\ge 1\), is a non-negative function on \(\Omega _T\) and \(u_0\) is a non-negative function defined on \(\Omega \) belonging to some Lebesgue spaces. The existence and regularity of the very weak and weak solutions are obtained under different assumptions on the summability of the data and on \(\gamma \). One of the difficulties arising in the problem is the proof of the strict positivity of the weak solutions inside the parabolic cylinders. This proof involves the smallest eigenvalue of the fractional Laplacian and the weak comparison principle. We also deal with the case of singular Radon measures data and the asymptotic behavior of the very weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Attar, A., Bentifour, R., Peral, I.: On fractional \(p\)-Laplacian parabolic problem with general data. Ann. Mat. Pura Appl. (4) 197(2), 329–356 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdellaoui, B., Biroud, K., Laamri, E.-H.: Existence and nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary. J. Evol. Equ. 21, 1227–1261 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdellaoui, B., Boucherif, A., Touaoula, T.M.: Fractional parabolic problems with a nonlocal initial condition. Moroccan J. Pure Appl. Anal. 3(1), 116–132 (2017)

    Article  Google Scholar 

  4. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Regularity and nonuniqueness results for parabolic problems arising in some physical models having natural growth in the gradient. J. Math. Pures Appl. (9) 90(3), 242–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdellaoui, B., Medina, M., Peral, I., Primo, A.: The effect of the Hardy potential in some Calderón–Zygmund properties for the fractional Laplacian. J. Differ. Equ. 260(11), 8160–8206 (2016)

    Article  MATH  Google Scholar 

  6. Abdellaoui, B., Medina, M., Peral, I., Primo, A.: Optimal results for the fractional heat equation involving the Hardy potential. Nonlinear Anal. 140, 166–207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abdellaoui, B., Peral, I., Primo, A., Soria, F.: General KPZ equation with nonlocal diffusion: existence and regularity. Submitted. https://arxiv.org/pdf/1904.04593.pdf

  8. Adimurthi, A., Giacomoni, J., Santra, S.: Positive solutions to a fractional equation with singular nonlinearity. J. Differ. Equ. 265(4), 1191–1226 (2018)

    Article  MathSciNet  Google Scholar 

  9. Applebaum, D.: Lévy Processes and Stochastic Calculus, vol. 116. Cambridge Univ. Press, Cambridge, Second edition. Cambridge Studies in Advanced Mathematics (2009)

  10. Badra, M., Bal, K., Giacomoni, J.: A singular parabolic equation: existence, stabilization. J. Differ. Equ. 252(9), 5042–5075 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrios, B., De Bonis, I., Medina, M., Peral, I.: Semilinear problems for the fractional laplacian with a singular nonlinearity. Open Math. 13, 390–407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barrios, B., Medina, M., Peral, I.: Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Commun. Contemp. Math. 16(4), 1350046 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barrios, B., Medina, M.: Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions. Proc. R. Soc. Edinb. Sect. A: Math. 150(1), 475–495 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bayrami-Aminlouee, M., Hesaaraki, M., Hamdani, M.K., Nguyen, T.C.: Nonlocal Lazer McKenna type problem perturbed by the Hardy potential and its parabolic equivalence. Bound. Value Probl. Paper No. 68, 42 pp (2021)

  15. Biroud, K., Laamri, E.-H.: Fractional \(s(.)\) problem with singular potential and general data. Submitted

  16. Bisci, G.M., Radulescu, V.D., Servadei, R.: Variational methods for nonlocal fractional problems, volume 162 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2016. With a foreword by Jean Mawhin

  17. Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial. Differ. Equ. 37, 363–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boccardo, L., Orsina, L., Porzio, M.M.: Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources. Adv. Calc. Var. 4(4), 397–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bogdan, K., Jakubowski, T.: Estimates of the green function for the fractional laplacian perturbed by gradient. Potential Anal. 36, 455–481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bougherara, B., Giacomoni, J.: Existence of mild solutions for a singular parabolic equation and stabilization. Adv. Nonlinear Anal. 4(2), 123–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, Volume 20, Springer, [Cham], Unione Matematica Italiana, Bologna (2016)

  22. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Canino, A., Montoro, L., Sciunzi, B., Squassina, M.: Nonlocal problems with singular nonlinearity. Bull. Sci. Math. 141(3), 223–250 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, H., Veron, L.: Semilinear fractional elliptic equations involving measures. J. Differ. Equ. 257, 1457–1486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, W., Li, Y., Ma, P.: The Fractional Laplacian. World Scientific, New Jersey (2020)

    Book  MATH  Google Scholar 

  26. Danielli, D., Salsa, S.: Obstacle problems involving the fractional Laplacian. In: Recent Developments in Nonlocal Theory, pages De Gruyter, Berlin, 81–164 (2018)

  27. Droniou, J., Porretta, A., Prignet, A.: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19(2), 99–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. de Bonis, I., De Cave, L.M.: Degenerate parabolic equations with singular lower order terms. Differ. Integral Equ. 27(9–10), 949–976 (2014)

    MathSciNet  MATH  Google Scholar 

  29. De Bonis, I., Giachetti, D.: Singular parabolic problems with possibly changing sign data. Discrete Contin. Dyn. Syst. Ser. B. 19(7), 2047–2064 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Demengel, F., Demengel, G.: Functional spaces for the theory of elliptic partial differential equations, Universitext. Springer, London; EDP Sciences, Les Ulis, Translated from the 2007 French original by Reinie Erné (2012)

  31. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dipierro, S., Figalli, A., Valdinoci, E.: Strongly nonlocal dislocation dynamics in crystals. Commun. Partial Differ. Equ. 39(12), 2351–2387 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete Contin. Dyn. Syst. Ser. S. 12(2), 311–337 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1993)

  35. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  36. Klimsiak, T., Rozkosz, A.: Smooth measures and capacities associated with nonlocal parabolic operators. J. Evol. Equ. 19, 997–1040 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Kufner, John, O., Fučík, S.: Function Spaces, Noordhoff International Publishing, Leyden; Academia, Prague: Monographs and Textbooks on Mechanics of Solids and Fluids. Analysis, Mechanics (1977)

  38. Jiang, R., **ao, J., Yang, D., Zhai, Z.: Regularity and capacity for the fractional dissipative operator. J. Differ. Equ. 259, 3495–3519 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Leonori, T., Peral, I., Primo, A., Soria, F.: Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin. Dyn. Syst. 35(12), 6031–6068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oliva, F., Petitta, F.: A nonlinear parabolic problem with singular terms and nonregular data. Nonlinear Anal. 194, 111472 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pierre, M.: Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14(3), 522–533 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ponce, A.C.: Elliptic PDEs, Measures and Capacities, From the Poisson Equations to Nonlinear Thomas–Fermi Problems. EMS Tracts in Mathematics, Vol. 23. European Mathematical Society (EMS), Zürich (2016)

  43. Pozrikidis, C.: The Fractional Laplacian. CRC Press, Boca Raton (2016)

    Book  MATH  Google Scholar 

  44. Servadei, R.: The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2(3), 235–270 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Teng, K., Zhang, C., Zhou, S.: Renormalized and entropy solutions for the fractional \(p\)-Laplacian evolution equations. J. Evol. Equ. 19(2), 559–584 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vázquez, J.L.: The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion. In: Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Math., Volume 2186, Springer, Cham, pp. 205–278 (2017)

  50. Youssfi, A., Ould Mohamed Mahmoud, G.: On singular equations involving fractional laplacian. Acta Math. Sci. 40B(5), 1289–1315 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Youssfi, A., Ould Mohamed Mahmoud, G.: Nonlocal semilinear elliptic problems with singular nonlinearity. Calc. Var. Partial Differ. Equ. 60(4), 153 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Youssfi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellaoui, B., Ould Mohamed Mahmoud, G. & Youssfi, A. Fractional heat equation with singular nonlinearity. J. Pseudo-Differ. Oper. Appl. 13, 50 (2022). https://doi.org/10.1007/s11868-022-00484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-022-00484-5

Keywords

Mathematics Subject Classification

Navigation