Log in

On the Weinstein–Wigner transform and Weinstein–Weyl transform

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this paper, we define and study the Weinstein–Wigner transform and we prove its inversion formula. Next, we introduce and study the Weinstein–Weyl transform \({\mathcal {W}}_\sigma \) with symbol \(\sigma \) and we give an integral relation between it and the Weinstein–Wigner transform. At last, we give criteria in terms of \(\sigma \) for boundedness and compactness of the transform \({\mathcal {W}}_\sigma \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz. In: Séminaire de Théorie du Potentiel Paris, no. 3, pp. 18–38. Springer, (1978)

  2. Dachraoui, A.: Weyl–Bessel transforms. J. Comput. Appl. Math. 133(1–2), 263–276 (2001)

    Article  MathSciNet  Google Scholar 

  3. Dachraoui, A.: Weyl transforms associated with Laguerre functions. J. Comput. Appl. Math. 153(1–2), 151–162 (2003)

    Article  MathSciNet  Google Scholar 

  4. Dachraoui, A.: Weyl–Dunkl transforms. Glob. J. Pure Appl. Math. 2(3), 206–225 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Dasgupta, A., Wong, M.W.: Weyl transforms for H-type groups. J. Pseudo Differ. Oper. Appl. 6(1), 11–19 (2015)

    Article  MathSciNet  Google Scholar 

  6. de Gosson, M.: A transformation property of the wigner distribution under Hamiltonian symplectomorphisms. J. Pseudo Differ. Oper. Appl. 2(1), 91–99 (2011)

    Article  MathSciNet  Google Scholar 

  7. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, Hoboken (1984)

    MATH  Google Scholar 

  8. Kim, M., Ben-Benjamin, J., Cohen, L.: Inverse Weyl transform/operator. J. Pseudo Differ. Oper. Appl. 8(4), 661–678 (2017)

    Article  MathSciNet  Google Scholar 

  9. Mehrez, K.: Paley–Wiener theorem for the Weinstein transform and applications. Integral Transforms Special Funct. 28(8), 616–628 (2017)

    Article  MathSciNet  Google Scholar 

  10. Mejjaoli, H., Salem, A.O.A.: New results on the continuous Weinstein wavelet transform. J. Inequal. Appl. 2017(1), 270 (2017)

    Article  MathSciNet  Google Scholar 

  11. Mejjaoli, H., Salhi, M.: Uncertainty principles for the Weinstein transform. Czechoslov. Math. J. 61(4), 941–974 (2011)

    Article  MathSciNet  Google Scholar 

  12. Molahajloo, S., Wong, M.W.: Hierarchical Weyl transforms and the heat semigroup of the hierarchical twisted Laplacian. J. Pseudo Differ. Oper. Appl. 1(1), 35–53 (2010)

    Article  MathSciNet  Google Scholar 

  13. Nahia, Z.B., Salem, N.B.: On a mean value property associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory held in Kouty, Czech Republic (ICPT’94), pp. 243–253 (1996)

  14. Nahia, Z.B., Salem, N.B.: Spherical harmonics and applications associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory—ICPT ’94, Kouty, Czech Republic

  15. Radha, R., Kumar, N.S.: Weyl transform and Weyl multipliers associated with locally compact abelian groups. J. Pseudo Differ. Oper. Appl. 9(2), 229–245 (2018)

    Article  MathSciNet  Google Scholar 

  16. Salem, N.B., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integral Transforms Special Funct. 26(9), 700–718 (2015)

    Article  MathSciNet  Google Scholar 

  17. Saoudi, A.: A variation of the \({L}^p\) uncertainty principles for the Weinstein transform. ar**v preprint ar**v:1810.04484 (2018)

  18. Saoudi, A.: Calderón’s reproducing formulas for the weinstein \({L}^2\)-multiplier operators. Acceoted Asian Eur. J. Math. (2019). https://doi.org/10.1142/S1793557121500030

    Article  Google Scholar 

  19. Saoudi, A., Kallel, I.A.: \( L^2 \)-uncertainty principle for the Weinstein-Multiplier Operators. Int. J. Anal. Appl. 17(1), 64–75 (2019)

    MATH  Google Scholar 

  20. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83(2), 482–492 (1956)

    Article  MathSciNet  Google Scholar 

  21. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 10, p. 297. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  22. Weinstein, A.: Singular partial differential equations and their applications. Fluid Dyn. Appl. Math. 67, 29–49 (1962)

    MathSciNet  MATH  Google Scholar 

  23. Weyl, H.: The Theory of Groups and Quantum Mechanics. Courier Corporation, North Chelmsford (1950)

    MATH  Google Scholar 

  24. Wong, M.W.: The Weyl Transforms. Springer, Berlin (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Saoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saoudi, A. On the Weinstein–Wigner transform and Weinstein–Weyl transform. J. Pseudo-Differ. Oper. Appl. 11, 1–14 (2020). https://doi.org/10.1007/s11868-019-00313-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-019-00313-2

Keywords

Navigation