Log in

Opioid-induced Neurotoxicity in Patients with Cancer Pain

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Opioid-induced neurotoxicity (OINT) is a neuropsychiatric syndrome observed with opioid therapy. The mechanism of OINT is thought to be multifactorial, and many risk factors may facilitate its development. If symptoms of OINT are seen, the prescriber should consider hydration, discontinuation of the offending opioid drug, or switching of opioid medication, or the use of some adjuvants. Multiple factors like inter- and intraindividual differences in opioid pharmacology may influence the accuracy of dose calculations for opioid switching. Experience and clinical judgment in a specialistic palliative care setting should be used and individual patient characteristics considered when applying any conversion table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data are available.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Mercadante S. Cancer Pain treatment strategies in patients with cancer. Drugs. 2022;82:1357–66. This reference is of importante because is a comprehensive review of strategies for cancer pain management.

    Article  PubMed  Google Scholar 

  2. Daeninck PJ, Bruera E. Opioid use in cancer pain. Is a more liberal approach enhancing toxicity? Acta Anaesthesiol Scand. 1999;43:924–38.

    Article  CAS  PubMed  Google Scholar 

  3. McNicol E, et al. Management of opioid side effects in cancer-related and chronic noncancer pain: a systematic review. J Pain. 2003;4:231–56.

    Article  PubMed  Google Scholar 

  4. Bruera E, Pereira J. Neuropsychiatric toxicity of opioids. In: Jensen TS, Turner JA, Wiesenfeld-Hallen Z, eds. Proceedings of the 8th World Congress on Pain, Progress in Pain Re- search and Management, vol 8. Seattle: IASP Press, 1997: 717–38.

  5. Pereira J, Bruera E. Emerging neuropsychiatric toxicities of opioids. In: AG Lipman, ed. Journal of Pharmaceutical Care in Pain and Symptom Control – Innovations in Drug Development, Evaluation and Use. New York: The Haworth Press Inc., 1997: 5: 3–29

  6. •• Bramati P. Bruera E Delirium in palliative care. Cancers (Basel). 2021;13:5893. This reference is of outstanding importance because clearly explains the characteristics of many conditions of neurotoxicity.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mercadante S. Pathophysiology and treatment of opioid-related myoclonus in cancer patients. Pain. 1998;74:5–9.

    Article  CAS  PubMed  Google Scholar 

  8. Mao J, Sung B, Ji RR, Lim G. Chronic morphine induces down regulation of spinal glutamate transporters: implications in morphine intolerance and abnormal pain sensitivity. J Neurosci. 2002;22:8312–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gallagher R. Opioid-induced neurotoxicity. Can Fam Physician. 2007;53(3):426–7.

    PubMed  PubMed Central  Google Scholar 

  10. Bruera E, Pereira J. Acute neuropsychiatric findings in a patient receiving fentanyl for cancer pain. Pain. 1997;69:199–201.

    Article  CAS  PubMed  Google Scholar 

  11. Adair JC, el-Nachef A, Cutler P. Fentanyl neurotoxicity. Ann Emerg Med. 1996;27:791–2.

    Article  CAS  PubMed  Google Scholar 

  12. Andersen G, Christrup L, Sjogren P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage. 2003;25:74–9.

    Article  CAS  PubMed  Google Scholar 

  13. Quigley C, Joel S, Patel N, Baksh A, Slevin M. Plasma concentrations of morphine, morphine- 6-glucuronide and morphine-3-glucuronide and their relationship with analgesia and side effects in patients with cancer-related pain. Palliat Med. 2003;17:185–90.

    Article  PubMed  Google Scholar 

  14. Mercadante S, Arcuri E. Hyperalgesia and opioid switching. Am J Hosp Palliat Care. 2005;22:291–4.

    Article  PubMed  Google Scholar 

  15. Karunatilake H, Buckley NA. Severe neurotoxicity following oral meperidine (pethidine) overdose. Clin Toxicol (Phila). 2007;45:200–1.

    Article  PubMed  Google Scholar 

  16. Vella-Brincat J, Macleod AD. Adverse effects of opioids on the central nervous systems of palliative care patients. J Pain Palliat Care Pharmacother. 2007;21:15–25.

    Article  PubMed  Google Scholar 

  17. Mao J, Sung B, Ji RR, Lim G. Chronic morphine induces down regulation of spinal glutamate transporters: implications in morphine intolerance and abnormal pain sensitivity. J Neurosci. 2002;22:8312–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mercadante S, Arcuri E, Santoni A. Opioid-induced tolerance and hyperalgesia. CNS Drugs. 2019;33:943–55.

    Article  CAS  PubMed  Google Scholar 

  19. Smith MT, Wright AWE, Williams BE, Stuart G, Cramond T. Cerebrospinal fluid and plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in patients before and after initiation of intracerebroventricular morphine for cancer pain management. Anesth Analg. 1999;88:109–16.

    Article  CAS  PubMed  Google Scholar 

  20. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide: a potent antagonist of morphine analgesia. Life Sci. 1990;47:579–85.

    Article  CAS  PubMed  Google Scholar 

  21. Lotsch J. Opioid metabolites. J Pain Symptom Manage. 2005;29:S10–24.

    Article  PubMed  Google Scholar 

  22. Mercadante S. The role of morphine glucuronides in cancer pain. Palliat Med. 1999;13:95–104.

    Article  CAS  PubMed  Google Scholar 

  23. Mercadante S. Opioid metabolism and clinical aspects. Eur J Pharmacol. 2015;769:71–8.

    Article  CAS  PubMed  Google Scholar 

  24. Thwaites D, McCann S, Broderick P. Hydromorphone neuroexcitation. J Palliat Med. 2004;7:545–50.

    Article  PubMed  Google Scholar 

  25. Juba KM, Wjaler RG, Daron SM. Morphine and hydromorphone-induced hyperalgesia in a hospice patient. J Palliat Med. 2013;16:809–12.

    Article  PubMed  Google Scholar 

  26. Gong QL, Hedner J, Björkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain. 1992;48:249–55.

    Article  CAS  Google Scholar 

  27. Penson RT, Joel SP, Clark S, et al. Limited phase I study of morphine-3-glucuronide. J Pharm Sci. 2001;90:1810–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kofke WA, Garman RH, Garman R, Rose M. Opioid neurotoxicity: role of neurotransmitter systems. Neurol Res. 2000;22:733–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kofke WA, Garman RH, Garman R, Stiller R, Rose ME. Opioid neurotoxicity: fentanyl dose-response effects in rats. Anesth Analg. 1996;83:1298–306.

    Article  CAS  PubMed  Google Scholar 

  30. Schneider JA. Reserpine antagonism of morphine analgesia in mice. Proc Soc Exp Biol Med. 1994;87:614–5.

    Article  Google Scholar 

  31. Kissin I, Brown PT. Reserpine-induced changes in anesthetic action of fentanyl. Anesthesiology. 1985;62:597–600.

    Article  CAS  PubMed  Google Scholar 

  32. Mercadante S, Ferrera P, Villari P, et al. Hyperalgesia: an emerging iatrogenic syndrome. J Pain Symptom Manage. 2003;26:769–75.

    Article  PubMed  Google Scholar 

  33. de la Cruz M, Ransing V, Yennu S, et al. The frequency, characteristics, and outcomes among cancer patients with delirium admitted to an acute palliative care unit. Oncologist. 2015;20:1425–31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lawlor PG, Gagnon B, Mancini IL, et al. Occurrence, causes, and outcome of delirium in patients with advanced cancer: a prospective study. Arch Intern Med. 2000;160:786–94.

    Article  CAS  PubMed  Google Scholar 

  35. Reddy A, Yennurajalingam S, Pulivarthi K, et al. Frequency, outcome, and predictors of success within 6 weeks of an opioid rotation among outpatients with cancer receiving strong opioids. Oncologist. 2013;18:2212–20.

    Article  Google Scholar 

  36. Lim SY, Cengiz P. Opioid tolerance and opioid-induced hyperalgesia: is TrkB modulation a potential pharmacological solution? Neuropharmacology. 2022;220: 109260.

    Article  CAS  PubMed  Google Scholar 

  37. MacDonald N, Der L, Allan S, et al. Opioid hyperexcitability: the application of alternate opioid therapy. Pain. 1993;53:353–5.

    Article  PubMed  Google Scholar 

  38. Lim KH, Nguyen NN, Qian Y, et al. Frequency, outcomes, and associated factors for opioid-induced neurotoxicity in patients with advanced cancer receiving opioids in inpatient palliative care. J Palliat Med. 2018;21:1698–704.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fountain A. Visual hallucinations: a prevalence study among hospice inpatients. Palliat Med. 2001;15:19–25.

    Article  CAS  PubMed  Google Scholar 

  40. De La Cruz M, Fan J, Yennu S, et al. The frequency of missed delirium in patients referred to palliative care in a comprehensive cancer center. Support Care Cancer. 2015;23:2427–33.

    Article  PubMed  Google Scholar 

  41. Breitbart W, Gibson C, Tremblay A. The delirium experience: delirium recall and delirium-related distress in hospitalized patients with cancer, their spouses/caregivers, and their nurses. Psychosomatics. 2002;43:183–94.

    Article  PubMed  Google Scholar 

  42. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104:570–87.

    Article  CAS  PubMed  Google Scholar 

  43. Lee M, Silverman S, Hansen H, et al. A comprehensive review of opioid-induced hyperalgesia. Pain Phys. 2011;14:141–61.

    Google Scholar 

  44. Ackerman WE 3rd. Paroxysmal opioid-induced pain and hyperalgesia. J Ky Med Assoc. 2006;104:419–23.

    PubMed  Google Scholar 

  45. Tompkins DA, Campbell CM. Opioid-induced hyperalgesia: clinically relevant or extraneous research phenomenon? Curr Pain Headache Rep. 2011;15:129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fallon M, Colvin L. Opioid-induced hyperalgesia: fact or fiction? Palliat Med. 2008;22:5–6.

    Article  PubMed  Google Scholar 

  47. •• Higgins C, Smith BH, Matthews K. Evidence of opioid-induced hyperalgesia in clinical populations after chronic opioid exposure: a systematic review and meta-analysis. Br J Anaesth. 2019;122:e114-26. This paper is of importance as analitically shows the evidence og opioid-induced hyperalgesia after chronic opioid exposure.

    Article  CAS  PubMed  Google Scholar 

  48. Zylicz Z, Twycross R. Opioid-induced hyperalgesia may be more frequent than previously thought. JCO. 2008;26:1564.

    Article  Google Scholar 

  49. Tompkins DA, Campbell CM. Opioid-induced hyperalgesia: clinically relevant or extraneous research phenomenon? Curr Pain Headache Rep. 2011;15:129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jensen KB, Lonsdorf TB, Schalling M, Kosek E, Ingvar M. Increased sensitivity to thermal pain following a single opiate dose is influenced by the COMT val158met Polymorphism. PLoS ONE. 2009;4: e6016.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liang DY, Liao G, Lighthall GK, Peltz G, Clark DJ. Genetic variants of the P-glycoprotein gene Abcb1b modulate opioid-induced hyperalgesia, tolerance and dependence. Pharmacogenet Genom. 2006;16:825–35.

    Article  CAS  Google Scholar 

  52. Oladosu FA, Conrad MC, O’Buckley SC, Rashid NU, Slade DG, Nackley AG. Mu opioid splice variant MOR-1K contributes to the development of opioid-induced hyperalgesia. PLoS ONE. 2015;10(8): e0135711.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Caviness JN. Myoclonus. Mayo Clin Proc. 1996;71:679–88.

    Article  CAS  PubMed  Google Scholar 

  54. Brown TM, Skop BP, Mareth TR. Pathophysiology and management of the serotonin syndrome. Ann Pharmacother. 1996;30:527–33.

    Article  CAS  PubMed  Google Scholar 

  55. Staedt J, Stoppe G, Riemann H, Hajak G, Ruther E, Riederer P. Lamotrigine in the treatment of nocturnal myoclonus syndrome. Two case reports. J Neural Transm. 1996;103:355–61.

    Article  CAS  PubMed  Google Scholar 

  56. Matzo M, Dawson KA. Opioid-induced neurotoxicity. Am J Nurs. 2013;113:51–6.

    Article  PubMed  Google Scholar 

  57. Bower DK. Opioid-induced neurotoxicity: too much of a good thing. J Palliat Med. 2008;116:947–8.

    Article  Google Scholar 

  58. Mercadante S, Arcuri E. Opioids and rena function. J Pain. 2004;5:2–19.

    Article  CAS  PubMed  Google Scholar 

  59. Winegarden J, Carr DB, Bradshaw Y. Intravenous ketamine for rapid opioid dose reduction, reversal of opioid-induced neurotoxicity, and pain control in terminal care: case report and literature review. Pain Med. 2016;17:644–9.

    PubMed  Google Scholar 

  60. Mercadante S, Villari P, Ferrera P, Arcuri E, David F. Opioid switching and burst ketamine to improve the opioid response in patients with movement-related pain due to bone metastases. Clin J Pain. 2009;25:648–9.

    Article  PubMed  Google Scholar 

  61. Mercadante S, Bruera E. Opioid switching in cancer pain: from the beginning to nowadays. Crit Rev Oncol Hematol. 2016;99:241–8.

    Article  PubMed  Google Scholar 

  62. Mercadante S. Opioid rotation for cancer pain: rationale and clinical aspects. Cancer. 1999;86:1856–66.

    Article  CAS  PubMed  Google Scholar 

  63. Reddy A, Sinclair C, Crawford GB, et al. Opioid rotation and conversion ratios used by palliative care professionals: an international survey. J Palliat Med. 2022;25:1557–62.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mercadante S. Stop and go strategy for opioid switching requires flexibility. Eur J Cancer. 2012;48:944–5.

    Article  PubMed  Google Scholar 

  65. Mercadante S, Ferrera P, Arcuri E, Casuccio A. Opioid-induced hyperalgesia after rapid titration with intravenous morphine: switching and re-titration to intravenous methadone. Ann Palliat Med. 2012;1:10–3.

    PubMed  Google Scholar 

  66. McPherson ML. Why equianalgesic tables are only part of the answer to equianalgesia. Ann Palliat Med. 2020;9:537–41.

    Article  PubMed  Google Scholar 

  67. Shaheen PE, Walsh D, Lasheen W, Davis MP, Lagman RL. Opioid equianalgesic tables: are they all equally dangerous? J Pain Symptom Manag. 2009;38:409–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Mercadante MD.

Ethics declarations

Conflict of Interest

The authors did not receive support from any organization for the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercadante, S. Opioid-induced Neurotoxicity in Patients with Cancer Pain. Curr. Treat. Options in Oncol. 24, 1367–1377 (2023). https://doi.org/10.1007/s11864-023-01117-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01117-9

Keywords

Navigation