Log in

Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the multiplicity of concentrating solutions for the following class of (p, q)-Laplacian problems

$$\left\{{\matrix{{- {\Delta _p}u - {\Delta _q}u + V(\varepsilon \,x)({u^{p - 1}} + {u^{q - 1}}) = f(u) + \gamma {u^{{q^ *} - 1}}\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr {u \in {W^{1,p}}({\mathbb{R}^N}) \cap {W^{1,q}}({\mathbb{R}^N}),\,\,u > 0\,\,{\rm{in}}\,\,{\mathbb{R}^N},} \hfill \cr}} \right.$$

where ε > 0 is a small parameter, \(\gamma \in \{0,1\},\,1 < p < q < N,\,\,{q^*} = {{Nq} \over {N - q}}\) is the critical Sobolev exponent, \({\Delta _s}u = {\rm{div}}(|\nabla u{|^{s - 2}}\nabla u)\), with s ∈ {p, q}, is the s-Laplacian operator, V: ℝN → ℝ is a positive continuous potential such that inf∂Λ V > infΛ V for some bounded open set Λ ⊂ ℝN, and f: ℝ → ℝ is a continuous nonlinearity with subcritical growth. The main results are obtained by combining minimax theorems, penalization technique and Ljusternik–Schnirelmann category theory. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. As far as we know, all these results are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Alves and A. R. da Silva, Multiplicity and concentration behavior of solutions for a quasilinear problem involving N-functions via penalization method, Electronic Journal of Differential Equations 2016 2016, Article no. 158.

  2. C. O. Alves and A. R. da Silva, Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz–Sobolev space, Journal of Mathematical Physics 57 (2016), Article no. 111502.

  3. C. O. Alves, J. M. do Ó and M. A. S. Souto, Local mountain-pass for a class of elliptic problems inNinvolving critical growth, Nonlinear Analysis 46 (2001), 495–510.

    Article  MathSciNet  Google Scholar 

  4. C. O. Alves and G. M. Figueiredo, Multiplicity of positive solutions for a quasilinear problem inNvia penalization method, Advanced Nonlinear Studies 5 (2005), 551–572.

    Article  MathSciNet  Google Scholar 

  5. C. O. Alves and G. M. Figueiredo, Existence and multiplicity of positive solutions to a p-Laplacian equation inN, Differential and Integral Equations 19 (2006), 143–162.

    Article  MathSciNet  Google Scholar 

  6. C. O. Alves and G. M. Figueiredo, Multiplicity and concentration of positive solutions for a class of quasilinear problems, Advanced Nonlinear Studies 11 (2011), 265–294.

    Article  MathSciNet  Google Scholar 

  7. A. Ambrosetti and P. H Rabinowitz, Dual variational methods in critical point theory and applications, Journal of Functional Analysis 14 (1973), 349–381.

    Article  MathSciNet  Google Scholar 

  8. V. Ambrosio and V. D. Rădulescu, Fractional double-phase patterns: concentration and multiplicity of solutions, Journal de Mathématiques Pures et Appliquées 142 (2020), 101–145.

    Article  MathSciNet  Google Scholar 

  9. V. Ambrosio and D. Repovš, Multiplicity and concentration results for a (p, q)-Laplacian problem inN, Zeitschrift für Angewandte Mathematik und Physik 72 (2021), Article no. 33.

  10. L. Beck and G. Mingione, Lipschitz bounds and non-uniform ellipticity, Communications on Pure and Applied Mathematics 73 (2020), 944–1034.

    Article  MathSciNet  Google Scholar 

  11. V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calculus of Variations and Partial Differential Equations 2 (1994), 29–48.

    Article  MathSciNet  Google Scholar 

  12. H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Communications on Pure and Applied Mathematics 36 (1983), 437–477.

    Article  MathSciNet  Google Scholar 

  13. J. Chabrowski and J. Yang, Existence theorems for elliptic equations involving supercritical Sobolev exponent, Advances in Differential Equations 2 (1997), 231–256.

    Article  MathSciNet  Google Scholar 

  14. L. Cherfils and V. Il’yasov, On the stationary solutions of generalized reaction difusion equations with p&q-Laplacian, Communications on Pure and Applied Analysis 4 (2005), 9–22.

    MathSciNet  Google Scholar 

  15. S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topological Methods in Nonlinear Analysis 10 (1997), 1–13.

    Article  MathSciNet  Google Scholar 

  16. M. Colombo and G. Mingione, Regularity for double phase variational problems, Archive for Rational Mechanics and Analysis 215 (2015), 443–496.

    Article  MathSciNet  Google Scholar 

  17. M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calculus of Variations and Partial Differential Equations 4 (1996), 121–137.

    Article  MathSciNet  Google Scholar 

  18. G. M. Figueiredo, Existence of positive solutions for a class of p&q elliptic problems with critical growth onN, Journal of Mathematical Analysis and Applications 378 (2011), 507–518.

    Article  MathSciNet  Google Scholar 

  19. G. M. Figueiredo and M. Furtado, Positive solutions for some quasilinear equations with critical and supercritical growth, Nonlinear Analysis 66 (2007), 1600–1616.

    Article  MathSciNet  Google Scholar 

  20. G. M. Figueiredo and M. Furtado, Positive solutions for a quasilinear Schrödinger equation with critical growth, Journal of Dynamics and Differential Equations 24 (2012), 13–28.

    Article  MathSciNet  Google Scholar 

  21. G. M. Figueiredo and J. R. Santos, Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method, ESAIM. Control, Optimisation and Calculus and Variations 20 (2014), 389–415.

    Article  MathSciNet  Google Scholar 

  22. N. Fusco and C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Communications in Partial Differential Equations 18 (1993), 153–167.

    Article  MathSciNet  Google Scholar 

  23. C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing p&q-Laplacians, Annales Academiæ Scientiarum Fennicæ. Mathematica 33 (2008), 337–371.

    MathSciNet  Google Scholar 

  24. C. He and G. Li, The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to up−1at infinity inN, Nonlinear Analysis 68 (2008), 1100–1119.

    Article  MathSciNet  Google Scholar 

  25. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York–London, 1968.

    Google Scholar 

  26. G. Li and G. Zhang, Multiple solutions for the p&q-Laplacian problem with critical exponent, Acta Mathematica Scientia. Series B 29 (2009), 903–918.

    Article  MathSciNet  Google Scholar 

  27. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 1 (1984), 223–283.

    Article  MathSciNet  Google Scholar 

  28. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Revista Matemática Iberoamericana 1 (1985), 145–201.

    Article  MathSciNet  Google Scholar 

  29. P. Marcellini, Regularity under general and p, q-growth conditions, Discrete and Continuous Dynamical Systems. Series S 13 (2020), 2009–2031.

    Article  MathSciNet  Google Scholar 

  30. P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, Journal of Mathematical Analysis and Applications 501 (2021), Article no. 124408.

  31. G. Mingione and V. D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, Journal of Mathematical Analysis and Applications 501 (2021), Article no. 125197.

  32. J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Communications in Pure and Applied Mathematics 13 (1960), 457–468.

    Article  MathSciNet  Google Scholar 

  33. D. Mugnai and N. S. Papageorgiou, Wang’s multiplicity result for superlinear (p, q)-equations without the Ambrosetti–Rabinowitz condition, Transactions of the American Mathematical Society 366 (2014), 4919–4937.

    Article  MathSciNet  Google Scholar 

  34. J. M. do Ó, On existence and concentration of positive bound states of p-Laplacian equations inNinvolving critical growth, Nonlinear Analysis 62 (2005), 777–801.

    Article  MathSciNet  Google Scholar 

  35. N. Papageorgiou and V. D. Rădulescu, Resonant (p, 2)-equations with asymmetric reaction, Analysis and Applications 13 (2015), 481–506.

    Google Scholar 

  36. N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, On a class of parametric (p, 2)-equations, Applied Mathematics and Optimization 75 (2017), 193–228.

    Article  MathSciNet  Google Scholar 

  37. N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Double-phase problems with reaction of arbitrary growth, Zeitschrift für Angewandte Mathematik und Physik 69 (2018), Article no. 108.

  38. P. H. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indiana University Mathematics Journal 23 (1973), 729–754.

    Article  MathSciNet  Google Scholar 

  39. P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Zeitschrift für Angewandte Mathematik und Physik 43 (1992), 270–291.

    Article  MathSciNet  Google Scholar 

  40. J. Simon, Régularité de la solution d’un problème aux limites non linéaires, Toulouse. Faculté des Sciences. Annales. Mathématiques 3 (1981), 247–274.

    Article  MathSciNet  Google Scholar 

  41. A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, International Press, Somerville, MA, 2010, pp. 597–632.

    Google Scholar 

  42. N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Communications on Pure and Applied Mathematics 20 (1967), 721–747.

    Article  MathSciNet  Google Scholar 

  43. X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Communications in Mathematical Physics 53 (1993), 229–244.

    Article  Google Scholar 

  44. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser, Boston, MA, 1996.

    Google Scholar 

  45. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 50 (1986), 675–710; English translation in Mathematics of the USSR-Izvestiya 29 (1987), 33–66.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was partly supported by the GNAMPA Project 2020 entitled: Studi di Problemi Frazionari Nonlocali tramite Tecniche Variazionali. The second author was supported by the grant “Nonlinear Differential Systems in Applied Sciences” of the Romanian Ministry of Research, Innovation and Digitization, within PNRR-III-C9-2022-I8/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, V., Rădulescu, V.D. Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness. Isr. J. Math. (2024). https://doi.org/10.1007/s11856-024-2619-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-024-2619-8

Navigation