Log in

Cayley graphs that have a quantum ergodic eigenbasis

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate which finite Cayley graphs admit a quantum ergodic eigenbasis, proving that this holds for any Cayley graph on a group of size n for which the sum of the dimensions of its irreducible representations is o(n), yet there exist Cayley graphs that do not have any quantum ergodic eigenbasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

References

  1. S. Aida, T. Masuda and I. ’Shigekawa, Logarithmic Sobolev inequalities and exponential integrability, Journal of Functional Analysis 126 (1994), 83–101.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Anantharaman, Quantum ergodicity on regular graphs, Communications in Mathematical Physics 353 (2017), 633–690.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Anantharaman, Delocalization of Schrödinger eigenfunctions, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary Lectures, World Scientific, Hackensack, NJ, 2018, pp. 341–375.

    Google Scholar 

  4. N. Anantharaman and E. Le Masson, Quantum ergodicity on large regular graphs, Duke Mathematical Journal 164 (2015), 723–765.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Anantharaman and M. Sabri, Quantum ergodicity for the Anderson model on regular graphs, Journal of Mathematical Physics 58 (2017), Article no. 091901.

  6. A. Barvinok, Thrifty approximations of convex bodies by polytopes, International Mathematics Research Notices 2014 (2014), 4341–4356.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Böröczky, Jr. and G. Wintsche, Covering the sphere by equal spherical balls, in Discrete and Computational Geometry, Algorithms and Combinatorics, Vol. 25, Springer, Berlin, 2003, pp. 235–251.

    Chapter  Google Scholar 

  8. S. Brooks and E. Lindenstrauss, Non-localization of eigenfunctions on large regular graphs, Israel Journal of Mathematics 193 (2013), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. C. de Verdière, Ergodicité et fonctions propres du Laplacien, Communications in Mathematical Physics 102 (1985), 497–502.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. J. Collins, Bounds for finite primitive complex linear groups, Journal of Algebra 319 (2008), 759–776.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, Journal of Functional Analysis 59 (1984), 335–395.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Mathematica 139 (1977), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. B. Folland, How to integrate a polynomial over a sphere, American Mathematical Monthly 108 (2001), 446–448.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. T. Gowers, Quasirandom groups, Combinatorics, Probability and Computing 17 (2008), 363–387.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Gross, Logarithmic Sobolev inequalities, American Journal of Mathematics 97 (1975), 1061–1083.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups, Die Grundlehren der mathematischen Wissenschaften, Vol. 152, Springer, New York-Berlin, 1970.

    Book  MATH  Google Scholar 

  17. S. Lang, Cyclotomic Fields. I and II, Graduate Texts in Mathematics, Vol. 121, Springer, New York, 1990. by Karl Rubin. MR 1029028

    Book  MATH  Google Scholar 

  18. M. Ledoux, Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter, Journal of Mathematics of Kyoto University 35 (1995), 211–220.

    MathSciNet  MATH  Google Scholar 

  19. M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, Vol. 89, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  20. M. W. Liebeck and L. Pyber, Upper bounds for the number of conjugacy classes of a unite group, Journal of Algebra 198 (1997), 538–562.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Magee, J. Thomas and Y. Zhao, Quantum unique ergodicity for Cayley graphs of quasirandom groups, https://arxiv.org/abs/2204.10642.

  22. E. S. Meckes, The Random Matrix Theory of the Classical Compact Groups, Cambridge Tracts in Mathematics, Vol. 218, Cambridge University Press, Cambridge, 2019.

    Book  MATH  Google Scholar 

  23. E. S. Meckes and M. W. Meckes, Spectral measures of powers of random matrices, Electronic Communications in Probability 18 (2013), Article no. 78.

  24. A. Naor, On the Banach-space-valued Azuma inequality and small-set isoperimetry of Alon-Roichman graphs, Combinatorics. Probability and Computing 21 (2012), 623–634.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Naor, A. Sah, M. Sawhney and Y. Zhao, Every measure on the ball has a sub-gaussian orthonormal basis, forthcoming manuscript.

  26. M. Naszódi, F. Nazarov and D. Ryabogin, Fine approximation of convex bodies by polytopes, American Journal of Mathematics 142 (2020), 809–820.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Sah, M. Sawhney and Y. Zhao, Cayley graphs without a bounded eigenbasis, International Mathematics Research Notices 2022 (2022), 6157–6185.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Simon, Representations of Finite and Compact Groups, Graduate Studies in Mathematics, Vol. 10, American Mathematical Society, Providence, RI, 1996.

    MATH  Google Scholar 

  29. A. I. Snirel’man, Ergodic properties of eigenfunctions, Uspekhi Matematicheskikh Nauk 29 (1974), 181–182.

    MathSciNet  Google Scholar 

  30. T. Tao, Expansion in Finite Simple Groups of Lie Type, Graduate Studies in Mathematics, Vol. 164, American Mathematical Society, Providence, RI, 2015.

    Book  MATH  Google Scholar 

  31. S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Mathematical Journal 55 (1987), 919–941.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Naor.

Additional information

In celebration of the 70’th birthday of Nati Linial

Naor was supported by NSF grant DMS-2054875 and a Simons Investigator award.

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302.

Sah was supported by the PD Soros Fellowship.

Zhao was supported by NSF CAREER Award DMS-2044606, a Sloan Research Fellowship, and the MIT Solomon Buchsbaum Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naor, A., Sah, A., Sawhney, M. et al. Cayley graphs that have a quantum ergodic eigenbasis. Isr. J. Math. 256, 599–617 (2023). https://doi.org/10.1007/s11856-023-2516-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2516-6

Navigation