Log in

Polynomial growth and asymptotic dimension

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Bonamy et al. [4] showed that graphs of polynomial growth have finite asymptotic dimension. We refine their result showing that a graph of polynomial growth strictly less than nk+1 has asymptotic dimension at most k. As a corollary Riemannian manifolds of bounded geometry and polynomial growth strictly less than nk+1 have asymptotic dimension at most k.

We show also that there are graphs of growth < n1+ϵ for any ϵ > 0 and infinite asymptotic Assouad—Nagata dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, Journal of the American Mathematical Society 3 (1990), 355–374.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bell and A. Dranishnikov, Asymptotic dimension, Topology and its Applications 155 (2008), 1265–1296.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Benjamini and A. Georgakopoulos, Triangulations of uniform subquadratic growth are quasi-trees, https://arxiv.org/abs/2106.06443.

  4. M. Bonamy, N. Bousquet, L. Esperet, C. Groenland, C.-H. Liu, F. Pirot and A. Scott, Asymptotic Dimension of minor-closed Families and Assouad-Nagata Dimension of Surfaces, European Journal of Mathematics, to apepar, https://arxiv.org/abs/2012.02435.

  5. N. Brodskiy, J. Dydak, M. Levin and A. Mitra, A Hurewicz theorem for the Assouad-Nagata dimension, Journal of the London Mathematical Society 77 (2008), 741–756.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Buyalo, A. Dranishnikov and V. Schroeder, Embedding of hyperbolic groups into products of binary trees, Inventiones Mathematicae, 169 (2007), 153–192.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Buyalo and N. Lebedeva, Dimensions of locally and asymptotically self-similar spaces, St. Petersburg Mathematical Journal 19 (2008), 45–65.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. N. Dranishnikov and J. Smith, On asymptotic Assouad-Nagata dimension, Topology and its Applications 154 (2007), 934–952.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Dranishnikov and M. Zarichnyi, Universal spaces for asymptotic dimension, Topology and its Applications 140 (2004), 203–225.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Le Donne and T. Rajala, Assouad dimension, Nagata dimension, and uniformly close metric tangents, Indiana University Mathematics Journal 64 (2015), 21–54

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Fujiwara and P. Papasoglu, Asymptotic dimension of planes and planar graphs, Transactions of the American Mathematical Society 374 (2021), 8887–8901.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gromov, Asymptotic invariants of infinite groups, in Geometric Group Theory, Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, Vol. 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.

    Google Scholar 

  13. M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 2007.

    MATH  Google Scholar 

  14. J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer, New York, 2001.

    Book  MATH  Google Scholar 

  15. M. Jørgensen and U. Lang, Geodesic spaces of low Nagata dimension, Annales Fennici Mathematici 47 (2022), 83–88.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Krauthgamer and J. R. Lee, The intrinsic dimensionality of graphs, Combinatorica 27 (2007), 551–585.

    Article  MathSciNet  MATH  Google Scholar 

  17. U. Lang and T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, International Mathematics Research Notices 2005 (2005), 3625–3655.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Linial, Variation on a theme of Levin, In Open Problems, Workshop on Discrete Metric Spaces and their Algorithmic Applications, Haifa, 2002, p. 10, http://kam.mff.cuni.cz/∼matousek/haifaop.ps.

  19. N. Linial, E. London and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15 (1995), 215–245.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Liu, 3-manifolds with nonnegative Ricci curvature, Inventiones Mathematicae 193 (2013), 367–375.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. I. Ostrovskii and D. Rosenthal, Metric dimensions of minor excluded graphs and minor exclusion in groups, International Journal of Algebra and Computation 25 (2015), 541–554.

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Shen, Complete manifolds with nonnegative Ricci curvature and large volume growth, Inventiones Mathematicae 125 (1996), 393–404.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Špakula and A. Tikuisis, Relative commutant pictures of Roe algebras, Communications in Mathematical Physics 365 (2019), 1019–1048.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Tessera, Asymptotic isoperimetry of balls in metric measure spaces, Publicacions Matemátiques 50 (2006), 315–348.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Yu, The Novikov conjecture for groups with finite asymptotic dimension, Annals of Mathematics 147 (1998), 325–355.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Papasoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papasoglu, P. Polynomial growth and asymptotic dimension. Isr. J. Math. 255, 985–1000 (2023). https://doi.org/10.1007/s11856-023-2479-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2479-7

Navigation