Log in

Affine representability and decision procedures for commutativity theorems for rings and algebras

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider applications of a finitary version of the Affine Representability theorem, which follows from recent work of Belov-Kanel, Rowen, and Vishne. Using this result we are able to show that when given a finite set of polynomial identities, there is an algorithm that terminates after a finite number of steps which decides whether these identities force a ring to be commutative. We then revisit old commutativity theorems of Jacobson and Herstein in light of this algorithm and obtain general results in this vein. In addition, we completely characterize the homogeneous multilinear identities that imply the commutativity of a ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Aljadeff, A. Kanel-Belov and Y. Karasik, Kemer’s theorem for affine PI algebras over a field of characteristic zero, Journal of Pure and Applied Algebra 220 (2016), 2771–2808.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability, and Computing 8 (1999), 7–29.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. D. Anderson and P. V. Danchev, A note on a theorem of Jacobson related to periodic rings, Proceedings of the American Mathematical Society 148 (2020), 5087–5089.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Belov, On non-Specht varieties, Fundamentalnaya i Prikladnaya Matematika 5 (1999), 47–66.

    MathSciNet  MATH  Google Scholar 

  5. A. Belov, Counterexamples to the Specht problem, Matematicheskiĭ Sbornik 191 (2000), 13–24; English translation in: Sbornik. Mathematics 191 (2000), 329–340.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Belov, Local finite basis property and local representability of varieties of associative rings, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 74 (2010), 3–134; English translation in: Izvestiya. Mathematics 74 (2010), 1–126.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Belov-Kanel, L. H. Rowen and U. Vishne, Full exposition of Specht’s problem, Serdica 38 (2012), 313–370.

    MathSciNet  MATH  Google Scholar 

  8. A. Belov-Kanel, L. H. Rowen and U. Vishne, Specht’s problem for associative affine algebras over commutative Noetherian rings, Transactions of the American Mathematical Society 367 (2015), 5553–5596.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Belov-Kanel, L. H. Rowen and U. Vishne, Representability of relatively free affine algebras over a noetherian ring, https://arxiv.org/abs/1805.04450.

  10. L. A. Bokut and Y. Chen, Gröbner—Shirshov bases and their calculation, Bulletin of Mathematical Sciences 4 (2014), 325–395.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Brešar, Functional identities: a survey, in Algebra and its Applications (Athens, OH, 1999), Contemporary Mathematics, Vol. 259, American Mathematical Society, Providence, RI, 2000, pp. 93–109.

    Chapter  Google Scholar 

  12. M. Brešar, C. Matej, A. Mikhail and W. S. Martindale III, Functional Identities, Frontiers in Mathematics, Birkhäuser, Basel, 2007.

    Book  MATH  Google Scholar 

  13. K. L. Chew and S. Lawn, Residually finite rings, Canadian Journal of Mathematics 22 (1970), 92–101.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. S. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer, Singapore, 2000.

    MATH  Google Scholar 

  15. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer, New York, 1995.

    Book  MATH  Google Scholar 

  16. I. N. Herstein, A generalization of a theorem of Jacobson III, American Journal of Mathematics 75 (1953), 105–111.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. N. Herstein, A condition for the commutativity of rings, Canadian Journal of Mathematics 9 (1957), 583–586.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. N. Herstein, Power maps in rings, Michigan Mathematical Journal 8 (1961), 29–32.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. N. Herstein, Multiplicative commutators in division rings, Israel Journal of Mathematics 31 (1978), 180–188.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, Vol. 15, Mathematical Association of America, Washington, DC, 1994.

    Book  MATH  Google Scholar 

  21. N. Jacobson, Structure theory for algebraic algebras of bounded degree, Annals of Mathematics 46 (1945), 695–707.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Kanel-Belov and L. H. Rowen, Computational Aspects of Polynomial Identities, Research Notes in Mathematics, Vol. 9, AK Peters, Wellesley, MA, 2005.

    Book  MATH  Google Scholar 

  23. A. R. Kemer, Identities of finitely generated algebras over an infinite field, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 54 (1990), 726–753; English translation in: Mathematics of the USSR. Izvestiya 37 (1991), 69–97.

    MATH  Google Scholar 

  24. A. R. Kemer, Identities of associative algebras, in Algebra and Analysis (Kemerovo, 1988), American Mathematical Society Translations, Series 2, Vol. 148, American Mathematical Society, Providence, RI, 1991, pp. 65–71.

    Google Scholar 

  25. A. R. Kemer, Multilinear identities of the algebras over a field of characteristic p, International Journal of Algebra and Computation 5 (1995), 189–197.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. R. Kemer, Matrix type of some algebras over a field of characteristic p, Journal of Algebra 251 (2002), 849–863.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. G. Kleĭman, On identities in groups, Trudy Moskovskogo Matematicheskogo Obshchestva 44 (1982), 62–108.

    MathSciNet  MATH  Google Scholar 

  28. A. A. Mikhalev and A. A. Zolotykh, Standard Gröbner—Shirshov bases of free algebras over rings, I. Free associative algebras, International Journal of Algebra and Computation 8 (1998), 689–726.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. A. Mikhalev and A. A. Zolotykh, Algorithms for construction of standard Grobner—Shirshov bases of ideals of free algebras over commutative rings, Programming and Computer Software 24 (1998), 271–272.

    MathSciNet  MATH  Google Scholar 

  30. V. L. Murskiĭ, Examples of varieties of semigroups, Matematicheskie Zametki 3 (1968), 663–670.

    MathSciNet  MATH  Google Scholar 

  31. J. Pinter-Lucke, Commutativity conditions for rings: 1950–2005, Expositiones Mathematicae 25 (2007), 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Regev, Existence of identities in AB, Israel Journal of Mathematics 11 (1972), 131–152.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, Vol. 84, Academic Press, New York—London, 1980.

    MATH  Google Scholar 

  34. L. H. Rowen, Ring Theory II, Pure and Applied Mathematics, Vol. 128, Academic Press, Boston, MA, 1988.

    MATH  Google Scholar 

  35. L. H. Rowen, Graduate Algebra: Noncommutative View, Graduate Studies in Mathematics, Vol. 91, American Mathematical Society, Providence, RI, 2008.

    MATH  Google Scholar 

  36. W. Specht, Gesetze in Ringen I, Mathematische Zeitschrift 52 (1950), 557–589.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Varadarajan, Rings with all modules residually finite, Indian Academy of Sciences. Proceedings. Mathematical Sciences 109 (1999), 345–351.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of Jason P. Bell was supported by NSERC Discovery Grant RGPIN-2016-03632. The work of Peter V. Danchev was partially supported by the Bulgarian National Science Fund under Grant KP-06 No 32/1 of December 07, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Bell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, J.P., Danchev, P.V. Affine representability and decision procedures for commutativity theorems for rings and algebras. Isr. J. Math. 249, 121–166 (2022). https://doi.org/10.1007/s11856-022-2309-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2309-3

Navigation