Log in

Invariant random subgroups of linear groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let Γ < GL n (F) be a countable non-amenable linear group with a simple, center free Zariski closure. Let Sub(Γ) denote the space of all subgroups of Γ with the compact, metric, Chabauty topology. An invariant random subgroup (IRS) of Γ is a conjugation invariant Borel probability measure on Sub(Γ). An IRS is called non-trivial if it does not have an atom in the trivial group, i.e. if it is non-trivial almost surely. We denote by IRS0(Γ) the collection of all non-trivial IRS on Γ.

Theorem 0.1: With the above notation, there exists a free subgroup F < Γ and a non-discrete group topology on Γ such that for every μ ∈ IRS0(Γ) the following properties hold:

μ-almost every subgroup of Γ is open

  • F ·Δ = Γ for μ-almost every Δ ∈ Sub(Γ).

  • F ∩ Δ is infinitely generated, for every open subgroup. In particular, this holds for μ-almost every Δ ∈ Sub(Γ).

  • The map

Φ: (Sub(Γ), μ) → (Sub(F),Φ*μ) Δ → Δ ∩ F is an F-invariant isomorphism of probability spaces.

A more technical version of this theorem is valid for general countable linear groups. We say that an action of Γ on a probability space, by measure preserving transformations, is almost surely non-free (ASNF) if almost all point stabilizers are non-trivial.

Corollary 0.2: Let Γ be as in the Theorem above. Then the product of finitely many ASNF Γ-spaces, with the diagonal Γ action, is ASNF.

Corollary 0.3: Let Γ < GLn(F) be a countable linear group, A Δ Γ the maximal normal amenable subgroup of Γ — its amenable radical. If μ ∈ IRS(Γ) is supported on amenable subgroups of Γ, then in fact it is supported on Sub(A). In particular, if A(Γ) = <e> then Δ = <e>, μ almost surely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault and I. Samet, On the growth of l2-invariants for sequences of lattices in Lie groups, Preprint.

  2. M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault and I. Samet, On the growth of Betti numbers of locally symmetric spaces, C. R. Math. Acad. Sci. Paris 349 (2011), 831–835.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Abért, Y. Glasner and B. Virág, Kesten’s theorem for invariant random subgroups, Duke Math. J. 163 (2014), 465–488.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Abért, Y. Glasner and B. Virág, The measurable Kesten theorem, Ann. Probab. 44 (2016), 1601–1646.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Aldous and R. Lyons, Processes on unimodular random networks, Electron. J. Probab. 12 (2007), no. 54, 1454–1508.

    Article  MathSciNet  MATH  Google Scholar 

  6. U. Bader, B. Duchesne, J. Lécureux and P. Wesolek, Amenable invariant random subgroups, Israel J. Math. 213 (2016), 399–422.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bekka, Operator-algebraic superridigity for SLn(Z), n = 3, Invent. Math. 169 (2007), 401–425.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Breuillard and T. Gelander, On dense free subgroups of Lie groups, J. Algebra 261 (2003), 448–467.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Bergeron and D. Gaboriau, Asymptotique des nombres de Betti, invariants l2 et laminations, Comment. Math. Helv. 79 (2004), 362–395.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Breuillard and T. Gelander, A topological Tits alternative, Ann. of Math. (2) 166 (2007), 427–474.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Bowen, R. Grigorchuk and R. Kravchenko, Characteristic random subgroups of geometric groups and free abelian groups of infinite rank., ar**v:1402.3705, Trans. Amer. Math. Soc., to appear.

  12. L. Bowen, R. Grigorchuk and R. Kravchenko, Invariant random subgroups of lamplighter groups, Israel J. Math. 207 (2015), 763–782.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 319, Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  14. N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III; Topologie générale. Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Troisième édition revue et augmentée, Actualités Sci. Indust., No. 1143. Hermann, Paris, 1960.

    MATH  Google Scholar 

  15. L. Bowen, Random walks on random coset spaces with applications to Furstenberg entropy, Invent. Math. 196 (2014), 485–510.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Bowen, Invariant random subgroups of the free group, Groups Geom. Dyn. 9 (2015), 891–916.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251.

    Article  MATH  Google Scholar 

  18. F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376.

    Article  MATH  Google Scholar 

  19. J. Cannizzo, On invariant Schreier structures, Enseign. Math. 60 (2014), 397–415.

    Article  MathSciNet  MATH  Google Scholar 

  20. P.-E. Caprace and N. Monod, Isometry groups of non-positively curved spaces: structure theory, J. Topol. 2 (2009), 661–700.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Creutz and J. Peterson, Character rigidity for lattices and commensurators, ar**v:1311.4513, Trans. Amer. Math. Soc., to appear.

  22. D. Creutz and J. Peterson, Stabilizers of ergodic actions of lattices and commensurators., ar**v:1303.3949.

  23. D. Creutz, Stabilizers of actions of lattices in products of groups, Ergodic Theory and Dynamical Systems electronic (2016), 1–54.

    Google Scholar 

  24. H. Furstenberg, A note on borel’s density theorem, Proceedings of the American Mathematical Society 55 (1976), 209–212.

    MathSciNet  MATH  Google Scholar 

  25. T. Gelander and Y. Glasner, Countable primitive groups, Geom. Funct. Anal. 17 (2008), 1479–1523.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. I. Grigorchuk and K. S. Medinets, On the algebraic properties of topological full groups, Mat. Sb. 205 (2014), 87–108.

    Article  MathSciNet  Google Scholar 

  27. E. Glasner and B. Weiss, Uniformly recurrent subgroups, in Recent trends in ergodic theory and dynamical systems, Contemp. Math., Vol. 631, Amer. Math. Soc., Providence, RI, 2015, pp. 63–75.

    Google Scholar 

  28. Y. Hartman and O. Tamuz, Stabilizer rigidity in irreducible group actions, Israel J. Math. 216 (2016), 679–705.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, New York, 1995.

    Book  Google Scholar 

  30. I. Kapovich and T. Nagnibeda, Subset currents on free groups, Geom. Dedicata 166 (2013), 307–348.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Lang, Algebra, third ed., Graduate Texts in Mathematics, Vol. 211, Springer- Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  32. R. Lyons and Y. Peres, Cycle density in infinite Ramanujan graphs, Ann. Probab. 43 (2015), 3337–3358.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. A. Margulis and G. A. Soĭfer, Nonfree maximal subgroups of infinite index of the group SLn(Z), Uspekhi Mat. Nauk 34 (1979), 203–204.

    MathSciNet  Google Scholar 

  34. G. A. Margulis and G. A. Soĭfer, Maximal subgroups of infinite index in finitely generated linear groups, J. Algebra 69 (1981), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Parreau, Dégénérescences de sous-groupes discrets de groupes de lie semisimples et actions de groupes sur des immeubles affines,, Ph.D. thesis, University Paris 11, Orsay,, 2000.

  36. J. Peterson and A. Thom, Character rigidity for special linear groups, J. Reine Angew. Math. 716 (2016), 207–228.

    MathSciNet  MATH  Google Scholar 

  37. J. Raimbault, On the convergence of arithmetic orbifolds., ar**v:1311.5375.

  38. B. Rémy, A. Thuillier and A. Werner, Bruhat-Tits buildings and analytic geometry, in Berkovich spaces and applications, Lecture Notes in Math., Vol. 2119, Springer, Cham, 2015, pp. 141–202.

    Google Scholar 

  39. Y. Shalom, Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan’s property (T), Trans. Amer. Math. Soc. 351 (1999), 3387–3412.

    Article  MATH  Google Scholar 

  40. G. Stuck and R. J. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. (2) 139 (1994), 723–747.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Tucker-Drob, Shift-minimal groups, fixed price 1, and the unique trace property, ar**v:1211.6395.

  42. J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Thomas and R. Tucker-Drob, Invariant random subgroups of strictly diagonal limits of finite symmetric groups, Bull. Lond. Math. Soc. 46 (2014), 1007–1020.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. M. Vershik, Nonfree actions of countable groups and their characters, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 378 (2010), 5–16, 228.

    Google Scholar 

  45. A. M. Vershik, Totally nonfree actions and the infinite symmetric group, Mosc. Math. J. 12 (2012), 193–212, 216.

    MathSciNet  MATH  Google Scholar 

  46. B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Springer-Verlag, New York, 1973, Ergebnisse der Matematik und ihrer Grenzgebiete, Band 76.

    MATH  Google Scholar 

  47. A. Weil, Basic number theory, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the second (1973) edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Glasner.

Additional information

With an appendix by Tsachik Gelander1 and Yair Glasner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glasner, Y. Invariant random subgroups of linear groups. Isr. J. Math. 219, 215–270 (2017). https://doi.org/10.1007/s11856-017-1479-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1479-x

Navigation