Log in

Furstenberg systems of Hardy field sequences and applications

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study measure preserving systems, called Furstenberg systems, that model the statistical behavior of sequences defined by smooth functions with at most polynomial growth. Typical examples are the sequences (\({n^{{3 \over 2}}}\)), (n log n), and (\([{n^{{3 \over 2}}}]\)), α ∈ ℝ ℚ, where the entries are taken mod 1. We show that their Furstenberg systems arise from unipotent transformations on finite-dimensional tori with some invariant measure that is absolutely continuous with respect to the Haar measure and deduce that they are disjoint from every ergodic system. We also study similar problems for sequences of the form (\(g({S^{[{n^{{3 \over 2}}}]}}y)\)), where S is a measure preserving transformation on the probability space (Y, ν), gL(ν), and y is a typical point in Y. We prove that the corresponding Furstenberg systems are strongly stationary and deduce from this a multiple ergodic theorem and a multiple recurrence result for measure preserving transformations of zero entropy that do not satisfy any commutativity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. El Abdalaoui, J. Kułaga-Przymus, M. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst. 37 (2017), 2899–2944.

    Article  MathSciNet  Google Scholar 

  2. B. Berend, Joint ergodicity and mixing, J. Anal. Math. 45 (1985), 255–284.

    Article  MathSciNet  Google Scholar 

  3. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), 337–349.

    Article  MathSciNet  Google Scholar 

  4. V. Bergelson and I. Håland-Knutson, Weak mixing implies weak mixing of higher orders along tempered functions, Ergodic Theory Dynam. Systems 29 (2009), 1375–1416.

    Article  MathSciNet  Google Scholar 

  5. V. Bergelson and A. Leibman, Failure of Roth theorem for solvable groups of exponential growth, Ergodic Theory Dynam. Systems 24 (2004), 45–53.

    Article  MathSciNet  Google Scholar 

  6. V. Bergelson and A. Leibman, Distribution of values of bounded generalized polynomials, Acta Math. 198 (2007), 155–230.

    Article  MathSciNet  Google Scholar 

  7. V. Bergelson, J. Moreira and F. Richter, Single and multiple recurrence along non-polynomial sequences, Adv. Math. 368 (2020), 107–146.

    Article  MathSciNet  Google Scholar 

  8. M. Boshernitzan, An extension of Hardy’s class L of “Orders of Infinity”, J. Anal. Math. 39 (1981), 235–255.

    Article  MathSciNet  Google Scholar 

  9. M. Boshernitzan, Uniform distribution and Hardy fields, J. Anal. Math. 62 (1994), 225–240.

    Article  MathSciNet  Google Scholar 

  10. M. Boshernitzan, G. Kolesnik, A. Quas and M. Wierdl, Ergodic averaging sequences, J. Anal. Math. 95 (2005), 63–103.

    Article  MathSciNet  Google Scholar 

  11. N. Bourbaki, Fonctions d’Une Variable Réele, Hermann, Paris, 1961.

    Google Scholar 

  12. Q. Chu, Multiple recurrence for two commuting transformations, Ergodic Theory Dynam. Systems 31 (2011), 771–792.

    Article  MathSciNet  Google Scholar 

  13. M. Denker, C. Grillenberger and K. Sigmund. Ergodic Theory on Compact Spaces, Springer, Berlin-New York, 1976.

    Book  Google Scholar 

  14. J-M. Derrien and E. Lesigne, Un théorème ergodique polynomial ponctuel pour les endomorphismes exacts et les K-systèmes, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 765–778.

    MathSciNet  MATH  Google Scholar 

  15. S. Donoso, A. Koutsogiannis and W. Sun., Pointwise multiple averages for sublinear functions, Ergodic Theory Dynam. Systems 40 (2020), 1594–1618.

    Article  MathSciNet  Google Scholar 

  16. N. Frantzikinakis, The structure of strongly stationary systems, J. Anal. Math. 93 (2004), 359–388.

    Article  MathSciNet  Google Scholar 

  17. N. Frantzikinakis, Multiple recurrence and convergence for Hardy sequences of polynomial growth, J. Anal. Math. 112 (2010), 79–135.

    Article  MathSciNet  Google Scholar 

  18. N. Frantzikinakis, A multidimensional Szemerédi theorem for Hardy sequences of polynomial growth, Trans. Amer. Math. Soc. 367 (2015), 5653–5692.

    Article  MathSciNet  Google Scholar 

  19. N. Frantzikinakis and B. Host, The logarithmic Sarnak conjecture for ergodic weights, Ann. of Math. (2) 187 (2018), 869–931.

    Article  MathSciNet  Google Scholar 

  20. N. Frantzikinakis and B. Host, Furstenberg systems of bounded multiplicative functions and applications, Int. Math. Res. Not. IMRN 2021 (2021), 6077–6107.

    Article  MathSciNet  Google Scholar 

  21. N. Frantzikinakis, E. Lesigne and M. Wierdl, Random sequences and pointwise convergence of multiple ergodic averages, Indiana Univ. Math. J. 61 (2012), 585–617.

    Article  MathSciNet  Google Scholar 

  22. H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Theory 1 (1967), 1–49.

    Article  MathSciNet  Google Scholar 

  23. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.

    Article  Google Scholar 

  24. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton 1981.

    Book  Google Scholar 

  25. A. Gomilko, M. Lemańczyk and T. de la Rue On Furstenberg systems of aperiodic multiplicative functions of Matomäki, Radziwiłł, and Tao, J. Mod. Dyn. 17 (2021), 529–555.

    Article  MathSciNet  Google Scholar 

  26. G. Hardy, Orders of Infinity. The “Infinitärcalcül” of Paul du Bois-Reymond, Hafner, New York, 1971.

    MATH  Google Scholar 

  27. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397–488.

    Article  MathSciNet  Google Scholar 

  28. B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, American Mathematical Society, Providence, RI, 2018.

    Book  Google Scholar 

  29. E. Jenvey, Strong stationarity and De Finetti’s theorem, J. Anal. Math. 73 (1997), 1–18.

    Article  MathSciNet  Google Scholar 

  30. A. Le, J. Moreira and F. Richter, A decomposition of multicorrelation sequences for commuting transformations along primes, Discrete Anal. (2021), Article no. 4.

  31. E. Lesigne, Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner, Ergodic Theory Dynam. Systems 10 (1990), 513–521.

    Article  MathSciNet  Google Scholar 

  32. P. Sarnak, Three lectures on the Möbius function randomness and dynamics, http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures.

  33. P. Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc. 43 (2012), 89–97.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Frantzikinakis.

Additional information

Dedicated to the memory of Michael Boshernitzan

The author was supported by the Hellenic Foundation for Research and Innovation, Project No. 1684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frantzikinakis, N. Furstenberg systems of Hardy field sequences and applications. JAMA 147, 333–372 (2022). https://doi.org/10.1007/s11854-022-0221-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0221-8

Navigation