Log in

Achieving High-Strength Ductility Property in a Microstructure Homogenization Al-Zn-Mg-Cu Alloy by Electroshock Treatment

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dislocation tangle and coarse precipitate segregation cause incalculable damage to the strength and ductility of high-strength Al-Zn-Mg-Cu aluminum alloys. These drawbacks are inevitable for the alloys undergoing deformation and artificial aging. In this work, electroshock treatment (EST) was successfully introduced between deformation and artificial aging of the alloys to improve their strength and ductility. The uniaxial tensile test results show that the elongation of the samples with EST could increase by 28.8%, and the ultimate strength simultaneously increases by 20 MPa relative to that without EST samples. Through microstructure characterization, it was found that EST eliminates dislocation tangle resulting from pre-stretching in the material. Furthermore, the distribution of coarse precipitates in EST samples is more uniform, and the size of precipitates is smaller in comparison with non-EST samples. The dislocation evolution induced by EST could be attributed to the non-equilibrium scattering of electron-dislocation, and a kinetic model for nucleation and growth of precipitates has been proposed to reveal the mechanism of precipitate evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Zhang, Y. Zhu, X. Gao, Y. Wu, and C. Hutchinson, Nat. Commun. 11, 5198 https://doi.org/10.1038/s41467-020-19071-7 (2020).

    Article  Google Scholar 

  2. P. Zhou, Y. Song, J. Lu, L. Hua, W. Wu, Q. Sun, and J. Su, Mater. Sci. Eng. A 856, 143996 (2022).

    Article  Google Scholar 

  3. Z. Zhang, Y. Li, Y. Liu, H. Li, D. Zhang, and J. Zhang, Mater. Lett. 347, 134640 https://doi.org/10.1016/j.matlet.2023.134640 (2023).

    Article  Google Scholar 

  4. H. Chen, C. Hu, F. Hu, X. Liu, F. Kong, W. **e, G. Wei, Y. Yang, X. Peng, Y. Huang, and N. Hort, Mater Charact 196, 112575 https://doi.org/10.1016/j.matchar.2022.112575 (2023).

    Article  Google Scholar 

  5. X. Chen, D. **a, J. Zhang, G. Huang, K. Liu, A. Tang, B. Jiang, and F. Pan, J. Alloys Compd. 846, 156306 https://doi.org/10.1016/j.jallcom.2020.156306 (2020).

    Article  Google Scholar 

  6. I.C. Dos Santos, E.M. Mazzer, R.B. Figueiredo, T.G. Langdon, and P.H.R. Pereira, J. Alloys Compd. 941, 168839 https://doi.org/10.1016/j.jallcom.2023.168839 (2023).

    Article  Google Scholar 

  7. R.-G. Guan and D. Tie, Acta Metall. Sin. (Engl. Lett.) 30, 409 https://doi.org/10.1007/s40195-017-0565-8 (2017).

    Article  Google Scholar 

  8. M. Zhu, Z. Xu, J. Yu, X. Liu, K. Wang, and J. Gu, Mater. Sci. Eng. A 878, 145225 https://doi.org/10.1016/j.msea.2023.145225 (2023).

    Article  Google Scholar 

  9. R. Bakhshi, M.H. Farshidi, and S.A. Sajjadi, T Nonferr Metal Soc. 31, 2909 https://doi.org/10.1016/S1003-6326(21)65702-3 (2021).

    Article  Google Scholar 

  10. N. Sadasivan, M. Balasubramanian, and B.R. Rameshbapu, J. Manuf. Process. 59, 698 https://doi.org/10.1016/j.jmapro.2020.10.032 (2020).

    Article  Google Scholar 

  11. A. Duchaussoy, X. Sauvage, A. Deschamps, F. De Geuser, G. Renou, and Z. Horita, J. Alloys Compd. 942, 169060 https://doi.org/10.1016/j.jallcom.2023.169060 (2023).

    Article  Google Scholar 

  12. H. Kim, H. Ha, J. Lee, S. Son, H.S. Kim, H. Sung, J.B. Seol, and J.G. Kim, Mater. Sci. Eng. A 810, 141020 (2021).

    Article  Google Scholar 

  13. Z. **ong, Y. Jiang, M. Yang, Y. Zhang, and L. Lei, J. Alloys Compd. 918, 165669 (2022).

    Article  Google Scholar 

  14. Y.-T. Mo, C. Wang, S.-Y. Zhang, X. Liu, M. Zha, J.-H. Luan, Z.-B. Jiao, and H.-Y. Wang, Mater. Sci. Eng. A 850, 143592 https://doi.org/10.1016/j.msea.2022.143592 (2022).

    Article  Google Scholar 

  15. R.N. Lumley, I.J. Polmear, and A.J. Morton, Mater Sci Tech 19, 1483 (2003).

    Article  Google Scholar 

  16. R.N. Lumley, I.J. Polmear, and A.J. Morton, Mater Sci Tech 21, 1025 (2005).

    Article  Google Scholar 

  17. W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, and C. Hutchinson, Science 363, 972 https://doi.org/10.1126/science.aav7086 (2019).

    Article  Google Scholar 

  18. S. Zhao, R. Zhang, X. Li, Y. Chong, and A.M. Minor, Nat. Mater. 20, 468 (2021).

    Article  Google Scholar 

  19. W. Wu, Y. Song, J. Lu, Y. Yu, and L. Hua, Mater. Sci. Eng. A 854, 143805 https://doi.org/10.1016/j.msea.2022.143805 (2022).

    Article  Google Scholar 

  20. W. Wu, Y. Song, P. Zhou, Y. Yu, L. **e, and L. Hua, J. Alloys Compd. 861, 157987 https://doi.org/10.1016/j.jallcom.2020.157987 (2021).

    Article  Google Scholar 

  21. A. Deschamps, F. Livet, and Y.B. Chet, Acta Mater. 47, 281 (1998).

    Article  Google Scholar 

  22. A. Deschamps and Y. Brechet, Acta Mater. 47, 293 (1998).

    Article  Google Scholar 

  23. X. Zhang, Z. Han, L. Xu, H. Ni, X. Hu, H. Zhou, Y. Zou, and J. Wang, J. Mater. Sci. Technol. 138, 157 https://doi.org/10.1016/j.jmst.2022.07.049 (2023).

    Article  Google Scholar 

  24. L. Mei, M.J. Yang, X.P. Chen, Q.Q. **, Y.Q. Wang, and Y.M. Li, Mater. Sci. Eng. A 867, 144716 https://doi.org/10.1016/j.msea.2023.144716 (2023).

    Article  Google Scholar 

  25. S. Shah, A. Gopal, E. Thronsen, C. Hatzoglou, and B. Holmedal, Mater Design. 222, 111026 https://doi.org/10.1016/j.matdes.2022.111026 (2022).

    Article  Google Scholar 

  26. M. Yu, Y. Zhang, X. Li, K. Wen, B. **ong, Z. Li, L. Yan, H. Yan, H. Liu, and Y. Li, Mater. Lett. 275, 128074 https://doi.org/10.1016/j.matlet.2020.128074 (2020).

    Article  Google Scholar 

  27. R. Chen, Q. Xu, H. Guo, Z. **a, Q. Wu, and B. Liu, Mater. Sci. Eng. A 685, 403 https://doi.org/10.1016/j.msea.2016.12.042 (2017).

    Article  Google Scholar 

  28. J.C. Werenskiold, A. Deschamps, and Y. Bréchet, Mater. Sci. Eng. A 293, 267 https://doi.org/10.1016/S0921-5093(00)01247-8 (2000).

    Article  Google Scholar 

  29. F. Perrard, A. Deschamps, and P. Maugis, Acta Mater. 55, 1255 https://doi.org/10.1016/j.actamat.2006.10.003 (2007).

    Article  Google Scholar 

  30. J. Lan, X. Shen, J. Liu, and L. Hua, Mater. Sci. Eng. A 745, 517 https://doi.org/10.1016/j.msea.2018.12.051 (2019).

    Article  Google Scholar 

  31. W.J. Poole, H.R. Shercliff, and T. Castillo, Mater Sci Tech 13, 897 (1997).

    Article  Google Scholar 

  32. Y. Huang, Y. Liu, Z. **ao, and Y. Huang, Mater. Sci. Eng. A 880, 145230 (2023).

    Article  Google Scholar 

  33. M.A. Khan, C. Xu, M. Hamza, M.A. Afifi, N.A. Qaisrani, H. Sun, B. Wang, W.Q. Khan, G. Yasin, and W.-B. Liao, J. Mater Res Technol 22, 696 https://doi.org/10.1016/j.jmrt.2022.11.155 (2023).

    Article  Google Scholar 

  34. D. Zhang, H.C. Jiang, Z.J. Cui, D.S. Yan, Y.Y. Song, and L.J. Rong, J. Mater. Sci. Technol. 121, 40 (2022).

    Article  Google Scholar 

  35. P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, and E. Kozeschnik, J. Alloys Compd. 609, 126 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2020YFA0714900), the National Natural Science Foundation of China (Grant No. 51975440,52205410), the Project funded by China Postdoctoral Science Foundation (Grant No. 2022M712482), the Natural Science Foundation of Hubei Province (2022CFB846), the 111 Project (Grant No. B17034), and the Innovative Research Team Development Program of Ministry of Education of China (Grant No. IRT17R83).

Author information

Authors and Affiliations

Authors

Contributions

Wenlin Wu: Conceptualization, Methodology, Writing–original draft, Investigation. Yanli Song: Funding acquisition, Writing–review & editing. Pu Zhou: Methodology, Data curation, Investigation. Jue Lu: Data curation. Lin Hua: Supervision, Writing–review & editing.

Corresponding author

Correspondence to Yanli Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Compliance with ethical standards

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Song, Y., Zhou, P. et al. Achieving High-Strength Ductility Property in a Microstructure Homogenization Al-Zn-Mg-Cu Alloy by Electroshock Treatment. JOM (2024). https://doi.org/10.1007/s11837-024-06697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06697-x

Navigation