Log in

Effects of Deformation Mechanisms on Texture Evolution and Mechanical Response of the Mg-1Al-0.5Mn-0.3Gd Alloy Under Plane Tension

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The tensile plastic deformation of the Mg-1Al-0.5Mn-0.3Gd alloy with transverse direction (TD)-tilted texture have been investigated using the experimental and visco-plastic self-consistent model. The results show that the relative activity of the different deformation mechanisms of the magnesium alloys with TD-tilted texture is related to different tensile mechanical properties and the texture evolution under the tensile plastic deformation is in the rolling direction and TD. Moreover, the tensile mechanical behavior of the magnesium alloys with TD-tilted texture has been further studied by inhibiting the activity of different deformation mechanisms in the TD, which shows that, at the early stage of the tensile plastic deformation, the basal <a> slip has the greatest influence on the magnesium alloy with TD-tilted texture. In addition, the pyramidal <c + a> slip plays an important role with the greatest influence on the mechanical properties of magnesium alloys with TD-tilted texture at the later stage of tensile plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Chen, Q.H. Wang, and L. Wang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2023.145119 (2023).

    Article  Google Scholar 

  2. Z.Y. Li, Y.J. Sun, and C.C. Zhang, J. Mater. Sci. Technol. https://doi.org/10.1016/j.jmst.2022.08.047 (2023).

    Article  Google Scholar 

  3. F. **ng, S. Li, and D.D. Yin, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2022.02.013 (2022).

    Article  Google Scholar 

  4. E.A. Ball and P.B. Prangnell, Scr. Metall. Mater. https://doi.org/10.1016/0956-716X(94)90159-7 (1994).

    Article  Google Scholar 

  5. S.A. Habib, A.S. Khan, and T. Gnäupel-Herold, Int. J. Plast. https://doi.org/10.1016/j.ijplas.2017.04.006 (2017).

    Article  Google Scholar 

  6. C. Zhou, Q.C. Le, and W.X. Jia, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2024.146174 (2024).

    Article  Google Scholar 

  7. L. Hu, H.Y. Lv, and L.X. Shi, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2020.12.008 (2022).

    Article  Google Scholar 

  8. F. Guo, D. Zhang, and X. Yang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.04.024 (2014).

    Article  Google Scholar 

  9. E.P. Song, Y.L. Lu, and Y. Zhang, Vacuum. https://doi.org/10.1016/j.vacuum.2019.108822 (2019).

    Article  Google Scholar 

  10. X. Liu, Z.Q. Zhang, and W.Y. Hu, J. Mater. Sci. Technol. https://doi.org/10.1016/j.jmst.2015.12.004 (2016).

    Article  Google Scholar 

  11. S.W. Bae, S.H. Kim, and J.U. Lee, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.07.028 (2018).

    Article  Google Scholar 

  12. Y. Zhao, H. Li, and C.J. **g, Intermetallics. https://doi.org/10.1016/j.intermet.2023.108000 (2023).

    Article  Google Scholar 

  13. F.Q. Bu, Q. Yang, and X. Qiu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2015.05.008 (2015).

    Article  Google Scholar 

  14. H.B. Yang, Y.F. Chai, and J.J. He, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.166879 (2022).

    Article  Google Scholar 

  15. Y.B. Pei, M. Yuan, and E.B. Wei, Mater. Des. https://doi.org/10.1016/j.matdes.2023.111962 (2013).

    Article  Google Scholar 

  16. S. Sandlöbes, M. Friák, and J. Neugebauer, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2013.03.006 (2013).

    Article  Google Scholar 

  17. T. Chen, Z.Y. Chen, and L. Yi, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.07.089 (2014).

    Article  Google Scholar 

  18. Q.H. Wang, B. Jiang, and L.T. Liu, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2020.06.093 (2020).

    Article  Google Scholar 

  19. H. Chen, Y.X. Han, and C.M. Liu, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2023.170680 (2023).

    Article  Google Scholar 

  20. S. Liu, C. Wang, and N. Hong, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2023.01.017 (2023).

    Article  Google Scholar 

  21. C. Zhou, J.B. Lin, and X.Y. Fang, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-022-07520-x (2023).

    Article  Google Scholar 

  22. W.W. Li, J.B. Lin, and C. Zhou, J. Mater. Sci. https://doi.org/10.1007/s10853-023-08786-9 (2023).

    Article  Google Scholar 

  23. F. Kabirian, A.S. Khan, and T. GnäUpel-Herlod, Int. J. Plast. https://doi.org/10.1016/j.ijplas.2014.10.012 (2015).

    Article  Google Scholar 

  24. S.H. Cho, E.J. Shin, and B.S. Seong, Acta Mater. https://doi.org/10.1016/j.actamat.2007.03.015 (2007).

    Article  Google Scholar 

  25. A. Jain and S.R. Agnew, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2006.03.160 (2007).

    Article  Google Scholar 

  26. R.A. Lebensohn and C.N. Tomé, Acta Metall. Mater. https://doi.org/10.1016/0956-7151(93)90130-K (1993).

    Article  Google Scholar 

  27. R.A. Lebensohn, P.A. Turner, and J.W. Signorelli, Model. Simul. Mater. Sci. https://doi.org/10.1088/0965-0393/6/4/011 (1998).

    Article  Google Scholar 

  28. C.N. Tomé, R.A. Lebensohn, and U.F. Kocks, Acta Metall. Mater. https://doi.org/10.1016/0956-7151(91)90083-D (1991).

    Article  Google Scholar 

  29. B. Clausen, C.N. Tome, and D.W. Brown, Acta Mater. https://doi.org/10.1016/j.actamat.2008.01.057 (2008).

    Article  Google Scholar 

  30. A. Maldar, L.Y. Wang, and G.M. Zhu, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2019.07.009 (2020).

    Article  Google Scholar 

  31. Y.Y. Li, B.W. Yang, and T.Z. Han, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2022.143234 (2022).

    Article  Google Scholar 

  32. H.C. Pan, F.H. Wan, and M.L. Feng, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2017.11.123 (2018).

    Article  Google Scholar 

  33. S.R. Agnew, M.H. Yoo, and C.N. Tomé, Acta Mater. https://doi.org/10.1016/S1359-6454(01)00297-X (2001).

    Article  Google Scholar 

  34. I. Basu and T. Al-Samman, Acta Mater. https://doi.org/10.1016/j.actamat.2015.05.044 (2015).

    Article  Google Scholar 

  35. B. Song, R.L. **, and Q. Liu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2015.05.088 (2015).

    Article  Google Scholar 

  36. C. Zhou, J.B. Lin, and W.P. Mu, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-022-07236-y (2023).

    Article  Google Scholar 

  37. H.C. Pan, F.H. Wang, and M.L. Feng, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2017.11.123 (2018).

    Article  Google Scholar 

  38. B. Langelier, A.M. Nasiri, and S.Y. Lee, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.09.116 (2015).

    Article  Google Scholar 

  39. H. Ding, X. Shi, and Y. Wang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2015.08.025 (2015).

    Article  Google Scholar 

  40. J. Jiang, A. Godfrey, and W. Liu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2006.07.175 (2008).

    Article  Google Scholar 

  41. Y. Paudel, C. Barrett, and S. Mujahid, J. Mater. Res. https://doi.org/10.1557/s43578-022-00831-8 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (52275356) and the Graduate Education Innovation Project in TYUST (SY2023055).

Author information

Authors and Affiliations

Authors

Contributions

Design: Li W W, Lin J B, Experiments: Li W W, Zhou C, Data analysis: Li W, Fang X Y, Manuscript writing: Li W W, Manuscript revision and supervising: Li W W, Lin J B, Zhou C, Liu H M, Lu H Y.

Corresponding author

Correspondence to **bao Lin.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lin, J., Zhou, C. et al. Effects of Deformation Mechanisms on Texture Evolution and Mechanical Response of the Mg-1Al-0.5Mn-0.3Gd Alloy Under Plane Tension. JOM (2024). https://doi.org/10.1007/s11837-024-06696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06696-y

Navigation