Log in

Effect of Variable Rate Non-isothermal Aging on the Microstructure and Properties of Al-Zn-Mg-Cu Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of variable rate nonisothermal aging (VR-NIA) on the properties and microstructure of Al-Zn-Mg-Cu alloy was studied through testing, such as hardness, friction and wear, intergranular corrosion (IGC), electrochemical corrosion and transmission electron microscopy (TEM) observation. The results showed that the comprehensive properties of Al-Zn-Mg-Cu alloy were significantly improved, and the microstructure morphology was well optimized after a new four stage VR-NIA treatment. After the variable speed process of 200–100–160°C, the hardness of the alloy reaches the highest value. The 3D friction and wear topography show that the wear depth of the specimen is the lowest and the wear resistance is the best. The matrix precipitate phase (MPts) had the smallest average size, the highest volume fraction and the strongest precipitation enhancement. When VR-NIA is completed, the intergranular corrosion depth of the H200 specimen is the smallest, the pitting pits are the fewest, and the corrosion rate is the slowest. Grain boundary precipitate phase (GBP) is coarse, the size and distance increase, it is intermittently distributed, and the corrosion does not progress easily. The corrosion resistance of the alloy is improved because of the increase in the width of the precipitate free zone (PFZ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Zhou, B. Liu, S.G. Zhang, R. Lin, Y. Jiang, and X.Y. Lan, J. Alloys Compd. 879, 160407 (2021).

    Article  Google Scholar 

  2. W.J. Zhang, R.M. Su, G.L. Li, and Y.D. Qu, J. Alloys Compd. 960, 170953 (2023).

    Article  Google Scholar 

  3. R.M. Su, T. Liu, Y.D. Qu, G. Bai, and R.D. Li, J. Mater. Eng. Perform. 28(4), 2212 (2019).

    Article  Google Scholar 

  4. X.Y. Peng, W.S. Su, D. **ao, and G.F. Xu, JOM 70(6), 993 (2018).

    Article  Google Scholar 

  5. Y.Z. Wang, R.M. Su, G.L. Li, and Y.D. Qu, Mater. Today. Commun. 37, 107571 (2023).

    Article  Google Scholar 

  6. Y.Z. Wang, R.M. Su, M.L. **, and G.L. Li, JOM 76(4), 1951 (2024).

    Article  Google Scholar 

  7. J.I. Rojas and D. Crespo, Metall. Mater. Trans. A 43, 4633 (2012).

    Article  Google Scholar 

  8. R.M. Su, Y.D. Qu, R.D. Li, C. Tian, and S.N. Nie, Mater. Sci. Forum 993, 146 (2020).

    Article  Google Scholar 

  9. D. James, T. Staley, US Patent 20070267113 Al (2007).

  10. Y.F. Wu, Y.M. Zhong, W. Xu, and X.Y. Li, Mater. Lett. 315, 131930 (2022).

    Article  Google Scholar 

  11. G.Y. Zheng, X. Luo, Z.D. Kou, B. Huang, and Y.Q. Yang, Mater. Charact. 194, 112418 (2022).

    Article  Google Scholar 

  12. J.T. Jiang, W.Q. **ao, L. Yang, W.Z. Shao, S.J. Yuan, and L. Zhen, Mater. Sci. Eng. A 605, 167 (2014).

    Article  Google Scholar 

  13. Y. Liu, D.M. Jiang, B.Q. Li, W.S. Yang, and J. Hu, Mater. Des. 57, 79 (2014).

    Article  Google Scholar 

  14. B. Ke, L. Ye, Y. Zhang, J. Tang, S. Liu, X. Liu, Y. Dong, and P. Wang, J. Alloys Compd. 890, 161933 (2022).

    Article  Google Scholar 

  15. H. Zhao, L.Y. Ye, Q.S. Cheng, Y. Kang, and W.J. Zhang, Mater. Charact. 197, 112715 (2023).

    Article  Google Scholar 

  16. C. Xu, J. Zhao, A. Guo, H. Li, G. Dai, and X. Zhang, J. Mater. Process. Technol. 249, 167 (2017).

    Article  Google Scholar 

  17. S. Yuan, M.D. Wu, X. Yin, Z.Y. Li, Y. Huang, and D.H. **ao, Mater. Charact. 207, 113491 (2024).

    Article  Google Scholar 

  18. J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, J. Alloys Compd. 829, 154469 (2020).

    Article  Google Scholar 

  19. K.N. Wang, R.M. Su, S.Y. Ma, Y.D. Qu, and R.D. Li, J. Mater. Eng. Perform. 29, 3297 (2020).

    Article  Google Scholar 

  20. Y.X. Jia, R.M. Su, L. Wang, G.L. Li, Y.D. Qu, and R.D. Li, Trans. Indian Inst. Met. 76, 741 (2022).

    Article  Google Scholar 

  21. R.M. Su, Y.X. Jia, G.L. Li, Y.D. Qu, and R.D. Li, J. Alloys Compd. 947, 169578 (2023).

    Article  Google Scholar 

  22. C. Guo, H.T. Zhang, Z.B. Wu, D.T. Wang, B.M. Li, and J.Z. Cui, Mater. Charact. 147, 84 (2019).

    Article  Google Scholar 

  23. X. Sauvage, F. Cuvilly, A. Russell, and K. Edalati, Mater. Sci. Eng. A 798, 140108 (2020).

    Article  Google Scholar 

  24. W.F. Xu, H.J. Lu, X.H. Li, M. Wang, J. Ma, and Y.X. Luo, Mater. Des. 212, 110297 (2021).

    Article  Google Scholar 

  25. Y.P. **ao, Q.L. Pan, W.B. Li, X.Y. Liu, and Y.B. He, Mater. Corros. 63, 421 (2012).

    Article  Google Scholar 

  26. S.Y. Chen, K.H. Chen, G.S. Peng, et al., Mater. Des. 35, 93 (2012).

    Article  Google Scholar 

  27. F.Q. Guo, S.W. Duan, Y.Z. Pan, D.T. Wu, K.J. Matsuda, T. Wang, and Y. Zou, J. Mater. Res. Technol. 23, 5807 (2023).

    Article  Google Scholar 

  28. T.A. Pan, Y.J. Lian, Y.C. Tzeng, H.Y. Bor, and S.L. Lee, JOM 74(10), 3877 (2022).

    Article  Google Scholar 

  29. S.Y. Ma, R.M. Su, G.L. Li, Y.D. Qu, and R.D. Li, J. Phys. Chem. Solids 167, 110747 (2022).

    Article  Google Scholar 

  30. R.M. Su, S.Y. Ma, K.N. Wang, G.L. Li, Y.D. Qu, and R.D. Li, Met. Mater. Int. 28, 862 (2022).

    Article  Google Scholar 

  31. P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Mater. Sci. Eng. A 604, 156 (2014).

    Article  Google Scholar 

  32. P. Zhang, L. Bao, S.X. Rao, J.J. Wu, Y.B. Li, and C.Y. **ong, Rare. Met. Mater. Eng. 52(12), 4099 (2023).

    Google Scholar 

  33. P. Zhang, X.S. Zhao, and S.X. Rao, Rare. Met. Mater. Eng. 52(05), 1573 (2023).

    Google Scholar 

  34. R.M. Su, Y.D. Qu, and R.D. Li, J. Mater. Eng. Perform. 23, 3842 (2014).

    Article  Google Scholar 

  35. G. Sha and A. Cerezo, Acta Mater. 52, 4503 (2004).

    Article  Google Scholar 

  36. J.L. Fu, S.X. Wang, and K.K. Wang, J. Mater. Sci. 53, 9790 (2018).

    Article  Google Scholar 

  37. X.Y. Peng, Y. Li, Q. Guo, and G.F. Xu, JOM 70(11), 2692 (2018).

    Article  Google Scholar 

  38. C.L. Tang, B.H. Luo, and Z.H. Bai, Mater. Sci. Eng. A 830, 142315 (2022).

    Article  Google Scholar 

  39. X. Sheng, Y. Yang, Y. Cheng, J. Li, W. Wu, Y. Liu, K. Li, Y. Zhao, and G. He, J. Alloys Compd. 845, 156198 (2020).

    Article  Google Scholar 

  40. T. Ramgopal, P.I. Gouma, and G.S. Frankel, Corrosion 58, 687 (2002).

    Article  Google Scholar 

  41. Y.J. Shi, Q.L. Pan, M.J. Li, X. Huang, and B. Li, J. Alloys Compd. 612, 42 (2014).

    Article  Google Scholar 

  42. Z. Li, L. Chen, J. Tang, G. Zhao, and C. Zhang, J. Alloys Compd. 848, 156561 (2020).

    Article  Google Scholar 

  43. K. Wen, B. **ong, Y. Zhang, Z. Li, X. Li, S. Huang, L. Yan, H. Yan, and H. Liu, Met. Mater. Int. 24, 537 (2018).

    Article  Google Scholar 

  44. S.D. Liu, B. Chen, C.B. Li, Y. Dai, Y.L. Deng, and X.M. Zhang, Corros. Sci. 91, 203 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (52204394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiming Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All co-authors agree to publish in the JOM.

Consent to participate

All co-authors agree to participate in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, L., Su, R. et al. Effect of Variable Rate Non-isothermal Aging on the Microstructure and Properties of Al-Zn-Mg-Cu Alloy. JOM (2024). https://doi.org/10.1007/s11837-024-06671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06671-7

Navigation