Log in

Comparative Analysis of Additives for Enhanced Biohydrogen Production via Dark Fermentation

  • Clean Energy Materials: Production and Characterization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dark fermentation holds promise as a strategy for biohydrogen production, utilizing a wide range of biomass substrates and aiding in waste management. However, it typically exhibits lower yields compared to conventional thermal processes such as reforming. To overcome this limitation, the use of additives to enhance microbial activity and improve yields has been explored. However, the application of organic and inorganic additives in dark fermentation remains limited. This study aims to address this gap by examining the effects of three types of compounds (zero valent iron nanoparticles or NP Fe(0), active carbon, and hydrochar) on dark fermentation and hydrogen generation. Notably, hydrochar exhibits the most promising results, increasing H2 production by 20.3%, with the highest biohydrogen yield being 92 mLH2/g of glucose. The distribution of volatile fatty acids indicated that the butyric and acetic pathways were utilized for H2 production. It is also important to consider the alkalinity of the feedstock, as high levels can increase the pH in the media and favor the production of methane (CH4) as the main fermentation product. In this case, NP Fe(0) is revealed as the additive that most favors methane generation, resulting in 6.1% higher production compared to the control assay. The analysis of the microbial community revealed that the digestate from an anaerobic reactor of a municipal wastewater treatment plant contains 4.24 times more Clostridium sensu stricto 1 than that from a sugar beet digester, which promotes the sustainable conversion of carbonaceous matter into hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R. Łukajtis, I. Hołowacz, K. Kucharska, M. Glinka, P. Rybarczyk, A. Przyjazny, and M. Kamiński, Sustain. Energy Rev. 91, 665 (2018).

    Article  Google Scholar 

  2. A.K. Pandey, S. Pilli, P. Bhunia, R.D. Tyagi, R.Y. Surampalli, T.C. Zhang, and A. Pandey, Chemosphere 288, 132444 (2022).

    Article  Google Scholar 

  3. A. Klindworth, E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, and F.O. Glöckner, Nucleic Acids Res. 41(1), e1 (2013).

    Article  Google Scholar 

  4. V. Jayachandran, N. Basak, R. De Philippis, and A. Adessi, Bioprocess Biosyst. Eng. 45(10), 1595 (2022).

    Article  Google Scholar 

  5. J.F. Soares, T.C. Confortin, I. Todero, F.D. Mayer, and M.A. Mazutti, Renew. Sustain. Energy Rev. 117, 109484 (2020).

    Article  Google Scholar 

  6. A.M. Lopez-Hidalgo, A. Smoliński, and A. Sanchez, Int. J. Hydrogen Energy 47(27), 13300 (2022).

    Article  Google Scholar 

  7. G. Yang and J. Wang, Renew. Sustain. Energy Rev. 95, 130 (2018).

    Article  Google Scholar 

  8. C. Lu, G. Wang, Q. Zhang, X. Yang, J. Yu, T. Liu, and H. Zhang, Appl. Energy 347, 121463 (2023).

    Article  Google Scholar 

  9. V.G. Sharmila, K. Tamilarasan, M.D. Kumar, G. Kumar, S. Varjani, S.A. Kumar, and J. Banu, Int. J. Hydrog. Energy 47(34), 15309 (2022).

    Article  Google Scholar 

  10. R. Sirohi, V. Vivekanand, A.K. Pandey, A. Tarafdar, M.K. Awasthi, A. Shakya, and A. Pandey, Environ. Technol. Innov. 30, 103100 (2023).

    Article  Google Scholar 

  11. J. He, S. Ren, S. Zhang, and G. Luo, Bioresour. Technol. 341, 125856 (2021).

    Article  Google Scholar 

  12. P. Wu, Z. Wang, A. Bhatnagar, P. Jeyakumar, H. Wang, Y. Wang, and X. Li, J. Hazard. Mater. 416, 125915 (2021).

    Article  Google Scholar 

  13. N.S. Jamali, J.M. Jahim, and W.N.R.W. Isahak, Int. J. Hydrog. Energy 41(46), 21617 (2016).

    Article  Google Scholar 

  14. C. Zhang, X. Kang, N. Liang, and A. Abdullah, Energy Fuels 31(11), 12217 (2017).

    Article  Google Scholar 

  15. P. Wimonsong and R. Nitisoravut, R. Energy Fuels 28(7), 4554 (2014).

    Article  Google Scholar 

  16. Z. Zhang, Z. Zhu, B. Shen, and L. Liu, Energy 171, 581 (2019).

    Article  Google Scholar 

  17. A. Catenacci, G. Boniardi, M. Mainardis, F. Gievers, G. Farru, F. Asunis, and R. Canziani, Energy Conv. Manag. 263, 115691 (2022).

    Article  Google Scholar 

  18. V. Kumar, R. Nabaterega, S. Khoei, and C. Eskicioglu, Rene. Sustain. Energy Rev. 144, 110965 (2021).

    Article  Google Scholar 

  19. M. Cavali, N.L. Junior, R. de Almeida Mohedano, P. Belli Filho, R.H.R. da Costa, and A.B. de Castilhos Junior, Sci. Total. Environ. 822, 153614 (2022).

    Article  Google Scholar 

  20. J. Bu, H.L. Wei, Y.T. Wang, J.R. Cheng, and M.J. Zhu, Water Res. 202, 117440 (2021).

    Article  Google Scholar 

  21. J. Zhang, C. Fan, and L. Zang, Bioresour. Technol. 245, 98 (2017).

    Article  Google Scholar 

  22. S. Ren, M. Usman, D.C. Tsang, S.O. Thong, I. Angelidaki, X. Zhu, and G. Luo, Environ. Sci. Technol. 54(9), 5755 (2020).

    Article  Google Scholar 

  23. Y. Yang, M. Wang, S. Yan, X. Yong, X. Zhang, M.K. Awasthi, and J. Zhou, Chemosphere 310, 136876 (2023).

    Article  Google Scholar 

  24. S. Shanmugam, A. Hari, A. Pandey, T. Mathimani, L. Felix, and A. Pugazhendhi, Fuel 270, 117453 (2020).

    Article  Google Scholar 

  25. D. Hidalgo, J.M. Martín-Marroquín, and F. Corona, Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-023-04103-1 (2023).

    Article  Google Scholar 

  26. L. Zhang, L. Zhang, and D. Li, Int. J. Hydrog. Energy 40(36), 12201 (2015).

    Article  Google Scholar 

  27. M. Taherdanak, H. Zilouei, and K. Karimi, Int. J. Hydrog. Energy 41(1), 167 (2016).

    Article  Google Scholar 

  28. G. Yang and J. Wang, Bioresour. Technol. 266, 413 (2018).

    Article  Google Scholar 

  29. Y. Ren, B. Si, Z. Liu, W. Jiang, and Y. Zhang, Int. J. Hydrog. Energy 47(3), 1499 (2022).

    Article  Google Scholar 

  30. A.D. Eaton and M.A.H. Franson, Standard Methods for the Examination of Water and Wastewater, 21st edn. (American Public Health Association (APHA), Washington, DC, 2005).

    Google Scholar 

  31. M.H. Zwietering, I. Jongenburger, F.M. Rombouts, and K.J.A.E.M. Van’t Riet, Appl. Environ. Microbiol. 56(6), 1875 (1990).

    Article  Google Scholar 

  32. A. Ahmad, K. Rambabu, S.W. Hasan, P.L. Show, and F. Banat, Int. J. Hydrogn. Energy. https://doi.org/10.1016/j.ijhydene.2023.05.161 (2023).

    Article  Google Scholar 

  33. L. Luo, S. Sriram, D. Johnravindar, T.L.P. Martin, J.W. Wong, and N. Pradhan, Bioresour. Technol. 358, 127404 (2022).

    Article  Google Scholar 

  34. M. M. Amin, M. Ghasemian, B. Bina, E, Taheri and A. Fatehizadeh, Health Scope, 8(2) (2019).

  35. C. Mahata, S. Ray, and D. Das, Energy Convers. Manag. 219, 113047 (2020).

    Article  Google Scholar 

  36. J. Grzelak, R. Ślęzak, L. Krzystek, and S. Ledakowicz, Ecol. Chem. Eng. S. 25(2), 295 (2018).

    Google Scholar 

  37. J. Yang, J. Zhang, J. Zhang, J. Zhang, Y. Yang, and L. Zang, Int. J. Hydrog. Energy 46(78), 38645 (2021).

    Article  Google Scholar 

  38. G. Yang and J. Wang, Int. J. Hydrog. Energy 44(47), 25542 (2019).

    Article  Google Scholar 

  39. P.S. Garcia, S. Gribaldo, and G. Borrel, Annu. Rev. Microbiol. 76, 727 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by the CDTI-Spanish Ministry of Science and Innovation in the frame of the project H24NEWAGE (Ref. CER-20211002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores Hidalgo.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, D., Pérez-Zapatero, E., Martín-Marroquín, J.M. et al. Comparative Analysis of Additives for Enhanced Biohydrogen Production via Dark Fermentation. JOM 76, 141–152 (2024). https://doi.org/10.1007/s11837-023-06231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06231-5

Navigation