Log in

Chloro-deoxidation Behavior of Titanium Powder with SnCl2 Addition

  • Microstructural Evolution in Powder Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Powder metallurgy (PM) offers cost-effective potential for manufacturing titanium and titanium alloys. High oxygen content on titanium powder surface is a key problem affecting the mechanical properties of PM Ti alloys. Therefore, this study proposes a chloro-deoxidation method to reduce the oxygen content of titanium powder via introducing stannous chloride (SnCl2) into titanium powder. In the sintering process, SnCl2 reacts with the surface oxide on titanium powder to remove the oxide film, and thus forms gas TiClxOy esca** from Ti matrix, resulting in the decrease of oxygen content. With ~ 2.5 wt.% SnCl2 addition, the oxygen content reduces from 0.6 wt.% to 0.5 wt.%. Accordingly, the elongation of as-sintered Ti-SnCl2 sample significantly increases from 4.8% to 11% (increasing by 129%), while the tensile strength decreases from 815 MPa to 788 MPa. After HIP treatment, the elongation increases from 11% to 13%, and the strength is about 765 MPa. Although same Sn content (5 wt.%) is added in Ti samples, Ti-SnCl2 sample shows higher elongation value of 9.4% compared to Ti-Sn sample (3.6%), due to lower oxygen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.G. Lu, C.H. Li, L.Y. Chen, A.T. Qiu, and W.Z. Ding, Calculation of phase equilibria in Ti–Al–Cr–Mn quaternary system for develo** lower cost titanium alloys. Mater. Chem. Phys. 129, 718 https://doi.org/10.1016/j.matchemphys.2011.04.017 (2011).

    Article  Google Scholar 

  2. Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, and B.Y. Huang, Design of powder metallurgy titanium alloys and composites. Mater. Sci. Eng. A 418, 25 https://doi.org/10.1016/j.msea.2005.10.057 (2006).

    Article  Google Scholar 

  3. Y. Zhang, C. Wang, Y. Zhang, P. Cheng, Y.H. Wei, S.F. **ao, and Y.G. Chen, Fabrication of low-cost Ti-1Al-8V-5Fe by powder metallurgy with TiH2 and FeV80 alloy. Mater. Manuf. Process. 32, 1869 https://doi.org/10.1080/10426914.2017.1303163 (2017).

    Article  Google Scholar 

  4. C. Katinas, S. Liu, and Y.C. Shin, Self-sufficient modeling of single track deposition of Ti–6Al–4V with the prediction of capture efficiency. J Manuf. Sci. Eng. 141, 011001 https://doi.org/10.1115/1.4041423 (2018).

    Article  Google Scholar 

  5. S. Liu and Y.C. Shin, Simulation and experimental studies on microstructure evolution of resolidified dendritic TiCx in laser direct deposited Ti-TiC composite. Mater. Des. 159, 212 https://doi.org/10.1016/j.matdes.2018.08.053 (2018).

    Article  Google Scholar 

  6. F.H. Froes and D. Eylon, Powder metallurgy of titanium alloys. Int. Mater. Rev. 35, 162 https://doi.org/10.1179/095066090790323984 (1990).

    Article  Google Scholar 

  7. Z.Z. Fang, J.D. Paramore, P. Sun, K.S. Ravi Chandran, Y. Zhang, Y. **a, and F. Cao, Powder metallurgy of titanium—past, present, and future. Int. Mater. Rev. 63, 407 https://doi.org/10.1080/09506608.2017.1366003 (2018).

    Article  Google Scholar 

  8. E. Baril, L.P. Lefebvre, and Y. Thomas, Interstitial elements in titanium powder metallurgy: sources and control. Powder Metall. 54, 183 https://doi.org/10.1179/174329011X13045076771759 (2011).

    Article  Google Scholar 

  9. Z. Liu and G. Welsch, Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys. Metall. Trans. A 19, 527 https://doi.org/10.1007/BF02649267 (1988).

    Article  Google Scholar 

  10. A.K. Swarnakar, O. van der Biest, and B. Baufeld, Young’s modulus and dam** in dependence on temperature of Ti–6Al–4V components fabricated by shaped metal deposition. J. Mater. Sci. 46, 3802 https://doi.org/10.1007/s10853-011-5294-1 (2011).

    Article  Google Scholar 

  11. J. Oh, C. Hong, and J. Lim, Comparison of deoxidation capability on the specific surface area of irregular titanium powder using calcium reductant. Adv. Powder. Technol. 30, 1 https://doi.org/10.1016/j.apt.2018.08.023 (2019).

    Article  Google Scholar 

  12. S.G. Fan, Z.H. Dou, T.A. Zhang, Y. Liu, and L.P. Niu, Deoxidation mechanism in reduced titanium powder prepared by multistage deep reduction of TiO2. Metall. Mater. Trans. B 50, 282 https://doi.org/10.1007/s11663-018-1466-6 (2019).

    Article  Google Scholar 

  13. B.Q. Li, G.L. Hou, H.C. **, F. Ding, P. Hu, and F.L. Yuan, The deep deoxygenation behavior of fine hydrogenated Ti alloy powders. JOM 73, 1188 https://doi.org/10.1007/s11663-018-1466-6 (2021).

    Article  Google Scholar 

  14. P. Kumar and K.S.R. Chandran, Strength-ductility property maps of powder metallurgy (PM) Ti-6Al-4V alloy: a critical review of processing-structure-property relationships. Metall. Mater. Trans. A 48, 2301 https://doi.org/10.1007/s11661-017-4009-x (2017).

    Article  Google Scholar 

  15. F.S. **n, W.W. Ding, Q.Y. Tao, H.Q. Tian, G. Chen, M.L. Qin, and X.H. Qu, Effect and evolution of oxide film in the HDH-Ti powder surface on densification behavior during sintering. Metall. Mater. Trans. A 53, 1164 https://doi.org/10.1007/s11661-022-06598-1 (2022).

    Article  Google Scholar 

  16. M. Yan, Y. Liu, G.B. Schaffer, and M. Qian, In situ synchrotron radiation to understand the pathways for the scavenging of oxygen in commercially pure Ti and Ti-6Al-4V by yttrium hydride. Scr. Mater. 68, 63 https://doi.org/10.1016/j.scriptamat.2012.09.024 (2013).

    Article  Google Scholar 

  17. M. Yan, Y. Liu, Y.B. Liu, C. Kong, G.B. Schaffer, and M. Qian, Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti-2.25Mo-1.5Fe alloy. Scr. Mater. 67, 491 https://doi.org/10.1016/j.scriptamat.2012.06.009 (2012).

    Article  Google Scholar 

  18. T. Kim, J. Oh, G. Cho, H. Chang, H.D. Jang, and J.W. Lim, Surface and internal deoxidation behavior of titanium alloy powder deoxidized by Ca vapor: comparison of the deoxidation capability of solid solution and intermetallic titanium alloys. Appl. Surf. Sci. 534, 147623 https://doi.org/10.1016/j.apsusc.2020.147623 (2020).

    Article  Google Scholar 

  19. T. Kim, K. Kim, J. Oh, J. Park, and J.W. Lim, Preparation method of low-oxygen Ti-6Al-4V alloy by solid state re-deoxidation using calcium. Mater. Sci. Technol. 35, 702 https://doi.org/10.1080/02670836.2019.1583846 (2019).

    Article  Google Scholar 

  20. A. Iizuka, T. Ouchi, and T.H. Okabe, Development of a new titanium powder sintering process with deoxidation reaction using yttrium metal. Mater. Trans. 61, 758 https://doi.org/10.2320/matertrans.MT-M2019340 (2020).

    Article  Google Scholar 

  21. Y. Zhang, W. Lu, and P. Sun, Deoxygenation of Ti metal: a review of processes in literature. Int. J. Refract. Metals Hard Mater. 91, 105270 https://doi.org/10.1016/j.ijrmhm.2020.105270 (2020).

    Article  Google Scholar 

  22. Y. **a, J.L. Zhao, Q.H. Tian, and X.Y. Guo, Review of the effect of oxygen on titanium and deoxygenation technologies for recycling of titanium metal. JOM 71, 3209 https://doi.org/10.1007/s11837-019-03649-8 (2019).

    Article  Google Scholar 

  23. G.Z. Chen, D.J. Fray, and T.W. Farthing, Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metall. Mater. Trans. B 32, 1041 https://doi.org/10.1007/s11663-001-0093-8 (2001).

    Article  Google Scholar 

  24. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361 https://doi.org/10.1038/35030069 (2000).

    Article  Google Scholar 

  25. R.O. Suzuki, M. Aizawa, and K. Ono, Calcium-deoxidation of niobium and titanium in Ca-saturated CaCl2 molten salt. J. Alloys Compd. 288, 173 https://doi.org/10.1016/S0925-8388(99)00116-4 (1999).

    Article  Google Scholar 

  26. Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Electrochemical deoxidation of titanium and its alloy using molten magnesium chloride. Metall. Mater. Trans. B 47, 3394 https://doi.org/10.1007/s11663-016-0792-9 (2016).

    Article  Google Scholar 

  27. T.H. Okabe, Y. Hamanaka, and Y. Taninouchi, Direct oxygen removal technique for recycling titanium using molten MgCl2 salt. Faraday Discuss. 190, 109 https://doi.org/10.1039/C5FD00229J (2016).

    Article  Google Scholar 

  28. C. Zheng, T. Ouchi, A. Iizuka, Y.K. Taninouchi, and T.H. Okabe, Deoxidation of titanium using Mg as deoxidant in MgCl2-YCl3 flux. Metall. Mater. Trans. B 50, 622 https://doi.org/10.1007/s11663-018-1494-2 (2019).

    Article  Google Scholar 

  29. L. Kong, T. Ouchi, and T.H. Okabe, Direct deoxidation of Ti by Mg in MgCl2–HoCl3 flux. Mater. Trans. 60, 2059 https://doi.org/10.1149/2.1011913jes (2019).

    Article  Google Scholar 

  30. R.O. Suzuki and S. Inoue, Calciothermic reduction of titanium oxide in molten CaCl2. Metall. Mater. Trans. B 34, 277 https://doi.org/10.1007/s11663-003-0073-2 (2003).

    Article  Google Scholar 

  31. L.X. Kong, T. Ouchi, C.Y. Zheng, and T.H. Okabe, Electrochemical deoxidation of titanium scrap in MgCl2-HoCl3 system. J. Electrochem. Soc. 166, 429 https://doi.org/10.1149/2.1011913jes (2019).

    Article  Google Scholar 

  32. X.M. Chen, H.Y. Ma, H.L. Lian, K.T. Huo, J. Wang, X.B. Bian, and P. Liu, Surface melting of Sn nanoparticles embedded in an Al matrix studied by high-temperature in situ X-ray diffraction. Solid State Commun. 152, 2031 https://doi.org/10.1016/j.ssc.2012.08.008 (2012).

    Article  Google Scholar 

  33. Y. Pan, X. Lu, M.D. Hayat, F. Yang, C.C. Liu, Y. Li, X.Y. Li, W. Xu, X.H. Qu, and P. Cao, Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys. Corros. Sci. 166, 108449 https://doi.org/10.1016/j.corsci.2020.108449 (2020).

    Article  Google Scholar 

  34. B. Wang, K. Liu, and J. Chen, Reaction mechanism of preparation of titanium by electro-deoxidation in molten salt. Trans. Nonferrous Metals Soc. 21, 2327 https://doi.org/10.1016/S1003-6326(11)61016-9 (2011).

    Article  Google Scholar 

  35. J. Dai, J. Zhu, C. Chen, and F. Weng, High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review. J. Alloys Compd. 685, 784 https://doi.org/10.1016/j.jallcom.2016.06.212 (2016).

    Article  Google Scholar 

  36. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian, Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 57, 251 https://doi.org/10.1179/1743290114Y.0000000108 (2014).

    Article  Google Scholar 

  37. A.R. Kamali, G. Divitini, C. Ducati, and D.J. Fray, Transformation of molten SnCl2 to SnO2 nano-single crystals. Ceram. Int. 40, 8533 https://doi.org/10.1016/j.ceramint.2014.01.067 (2014).

    Article  Google Scholar 

  38. H. Bordbar, A.A. Yousefi, and H. Abedini, Production of titanium tetrachloride (TiCl4) from titanium ores: a review. Polyolefins J. 4, 149 https://doi.org/10.22063/POJ.2017.1453 (2017).

    Article  Google Scholar 

  39. U. Diebold, Structure and properties of TiO2 surfaces: a brief review. Appl. Phys. A. 76, 681 https://doi.org/10.1007/s00339-002-2004-5 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This study receives the financial support from the National Natural Science Foundation of China (Nos. U21A200305, and 52004027), the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. 311021013), and the Research Project on Characteristic Innovation of University Teachers in Foshan City (NO. 2021XJZZ07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Yang or Cunguang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Li, Y., Guo, Z. et al. Chloro-deoxidation Behavior of Titanium Powder with SnCl2 Addition. JOM 75, 2578–2589 (2023). https://doi.org/10.1007/s11837-023-05825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05825-3

Navigation