Log in

Fatigue Properties and Life Prediction of GS80A Steel Under the Effect of Hydrogen-Rich Environment

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To ensure the safety of high-strength bolt materials in an ocean hydrogen-rich environment, this work first studies the H-effect on GS80A steel by mechanical tests and fracture surface observations. The experimental mechanical properties with/without the H-effect are compared with each other, showing a strong hydrogen-induced reduction of ductility, ultimate tensile strength, yield strength, and full-cycle fatigue life. To reproduce the S-N curve based on the experimental fatigue life with/without the H-effect, a neural network model and a typical gray theory are used in this paper for the first time. Reasonable agreement is found between these two models. Finally, the H-affected P-S-N curves are obtained based on the Bootstrap method, indicating the fatigue life obtained by the same condition convergence to Weibull distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\({\sigma }_{b}\) :

Tensile strength (MPa)

\({\sigma }_{y}\) :

Yield strength (MPa)

H-effect:

Hydrogen-effect

H-charging:

Hydrogen-charging

H-affected:

Hydrogen-affected

MLP-Regressor:

Multilayer Perceptron Regressor

References

  1. W.K. Yang, J.X. Hu, and Q.C. **e, Mar. Eng. 40, 127–130 (2018).

    Google Scholar 

  2. X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, and X. Song, Acta Metallurgica Sinica-English Lett. 33, 759–773 https://doi.org/10.1007/s40195-020-01039-7 (2020).

    Article  Google Scholar 

  3. D.P. Abraham and C.J. Altstetter, Metall. Mater. Trans. A. 26, 2849–2858 https://doi.org/10.1007/BF02669643 (1995).

    Article  Google Scholar 

  4. H. Luo, Z. Li, and D. Raabe, Sci. Rep., 7 (2017). https://doi.org/10.1038/s41598-017-10774-4

  5. Y.D. Li, S.M. Chen, Y.B. Liu, Z.G. Yang, S.X. Li, W.J. Hui, and Y.Q. Weng, J. Mater. Sci. 45, 831–841 https://doi.org/10.1007/s10853-009-4007-5 (2010).

    Article  Google Scholar 

  6. Y. Murakami and J. Nagata, J. Soc. Mater. Sci. 54(4), 420–427 (2005).

    Article  Google Scholar 

  7. Y. Aoki, K. Kawamoto, Y. Oda, H. Noguchi, and K. Higashida, Int. J. Fract. 133, 277–288 https://doi.org/10.1007/s10704-005-4942-3 (2005).

    Article  Google Scholar 

  8. Y. Furuya, H. Hirukawa, and M. Hayakawa, Metall. Mater. Trans. a-Phys. Metall. Mater. Sci. 41A, 2248–2256 https://doi.org/10.1007/s11661-010-0307-2 (2010).

    Article  Google Scholar 

  9. H. Matsunaga, M. Yoshikawa, R. Kondo, J. Yamabe, and S. Matsuoka, Int. J. Hydrogen Energy 40, 5739–5748 https://doi.org/10.1016/j.ijhydene.2015.02.098 (2015).

    Article  Google Scholar 

  10. G. Schauer, J. Roetting, M. Hahn, S. Schreijaeg, M. Bacher-Hoechst and S. Weihe, In 6th International Conference on Fatigue Design (Fatigue Design), (Senlis, FRANCE, 2015), pp 362–378.

  11. H. Bie, X. Li, P. Liu, Y. Liu, and P. Xu, Int. J. Hydrogen Energy 35, 2633–2636 https://doi.org/10.1016/j.ijhydene.2009.04.037 (2010).

    Article  Google Scholar 

  12. T. Michler, J. Naumann, and E. Sattler, Int. J. Fatigue 51, 1–7 https://doi.org/10.1016/j.ijfatigue.2013.01.010 (2013).

    Article  Google Scholar 

  13. Y. Tsuchida, T. Watanabe, G. Suzuki, and H. Yano, In 11th International Conference on the Mechanical Behavior of Materials (ICM), (Como, ITALY), pp 1176–1183.

  14. R. Gaddam, M. Hornqvist, M.L. Antti, and R. Pederson, Mater. Sci. Eng. a-Struct. Mater. Proper. Microstruct. Process. 612, 354–362 https://doi.org/10.1016/j.msea.2014.06.060 (2014).

    Article  Google Scholar 

  15. A. Pradhan, M. Vishwakarma, and K. Dwivedi, Mater. Today Proc. 26, 3015–3019 https://doi.org/10.1016/j.matpr.2020.02.627 (2020).

    Article  Google Scholar 

  16. Y. Ding, W.P. He, W. Zhang, W. Wang, Y.J. Li, and R. Dong, Aviat. Manuf. Technol. 08, 93–96 https://doi.org/10.16080/j.issn1671-833x.2010.08.019 (2010).

    Article  Google Scholar 

  17. O. Karakas, Materialwiss. Werkstofftech. 42, 888–893 https://doi.org/10.1002/mawe.201100848 (2011).

    Article  Google Scholar 

  18. J.R. Mohanty, B.B. Verma, P.K. Ray, and D.R.K. Parhi, J. Test. Eval. 38, 177–187 https://doi.org/10.1520/jte101907 (2010).

    Article  Google Scholar 

  19. W.Y. Chu, Q. LJ, J.X. Li, Y.J. Su, Y. Yan, Y. Bai., X.C. Ren, H.Y. Huang, (Bei**g: Science Press, 2013), pp. 14–20

  20. D. Zhao, C. Gao, Z. Zhou, S. Liu, B. Chen and J. Gao, Engineering Failure Analysis, 107 (2020). https://doi.org/10.1016/j.engfailanal.2019.104237

  21. D. Zhao, Y.-X. Liu, X.-T. Ren, J.-Z. Gao, S.-G. Liu, L.-Q. Dong and M.-S. Cheng, Eksploatacja I Niezawodnosc-Maintenance and Reliability, 23, 454–467 (2021). https://doi.org/10.17531/ein.2021.3.6

  22. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  Google Scholar 

  23. J.F. Barbosa, J.A.F.O. Correia, R.C.S. Freire Junior and A.M.P. De Jesus, Int. J. Fatigue, 135 (2020). https://doi.org/10.1016/j.ijfatigue.2020.105527

  24. F. Liu, G. Tian, T. Deng, D.Z. Zeng, and S.M. Zhou, Ordnance Mater. Sci. Eng. 39, 121–124 (2016).

    Google Scholar 

  25. K. Shen, Mod. Inf. Technol. 4, 165–167 (2020).

    Google Scholar 

  26. T. Gu, K.S. Stopka, C. Xu, and D.L. McDowell, Acta Mater. 188, 504–516 https://doi.org/10.1016/j.actamat.2020.02.009 (2020).

    Article  Google Scholar 

  27. K.S. Stopka, T. Gu, and D.L. McDowell, Int. J. Fatigue, 141 (2020). https://doi.org/10.1016/j.ijfatigue.2020.105865

  28. Y. Zhao and L. Yang, J. Bei**g Univ. Aeronaut. Astronaut. 48, 106–112 https://doi.org/10.13700/j.bh.1001-5965.2020.0536 (2022).

    Article  Google Scholar 

  29. X.Y. Chen, D.C. Zhou, C.J. Zhang, and W.W. Wang, Mech. Strength 36, 600–604 https://doi.org/10.16579/j.issn.1001.9669.2014.04.008 (2014).

    Article  Google Scholar 

  30. R. Fernandez-Sousa, C. Betegon, and E. Martinez-Paneda, Acta Mater. 199, 253–263 https://doi.org/10.1016/j.actamat.2020.08.030 (2020).

    Article  Google Scholar 

  31. T. Gu, J.R. Medy, V. Klosek, O. Castelnau, S. Forest, E. Herve-Luanco, F. Lecouturier-Dupouy, H. Proudhon, P.O. Renault, L. Thilly, and P. Villechaise, Int. J. Plast 122, 1–30 https://doi.org/10.1016/j.ijplas.2019.04.011 (2019).

    Article  Google Scholar 

  32. T. Gu, J.R. Medy, F. Volpi, O. Castelnau, S. Forest, E. Herve-Luanco, F. Lecouturier, H. Proudhon, P.O. Renault, and L. Thilly, Acta Mater. 141, 131–141 https://doi.org/10.1016/j.actamat.2017.08.066 (2017).

    Article  Google Scholar 

  33. X. Zhou, and W.A. Curtin, Acta Mater. 200, 932–942 https://doi.org/10.1016/j.actamat.2020.09.070 (2020).

    Article  Google Scholar 

  34. T. Gu, O. Castelnau, S. Forest, E. Herve-Luanco, F. Lecouturier, H. Proudhon, and L. Thilly, Int. J. Solids Struct. 121, 148–162 https://doi.org/10.1016/j.ijsolstr.2017.05.022 (2017).

    Article  Google Scholar 

  35. T. Zhao, Z. Liu, X. Xu, Y. Li, C. Du, and X. Liu, Corros. Sci. 157, 146–156 https://doi.org/10.1016/j.corsci.2019.05.028 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant number 52075111), and the Fundamental Research Funds for the Central Universities (grant number 3072022JC0701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Liu, S., Zou, Y. et al. Fatigue Properties and Life Prediction of GS80A Steel Under the Effect of Hydrogen-Rich Environment. JOM 75, 1306–1318 (2023). https://doi.org/10.1007/s11837-022-05688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05688-0

Navigation