Log in

Optimization Research on Preparation of CeO2 Using Microwave Heating Method Based on Regression Orthogonal Design

  • Instrumentation for Process Modeling and Validation
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microwave heating has characteristics of easy control and high efficiency. The optimization of process parameters and reactor structure is significant to improve the purity and microstructure of products, respectively. The purity of cerium oxide and mixing degree of homogeneity were taken as research indexes, the regression models for process parameters (microwave power, gas inlet velocity and material inlet velocity) and reactor structure (material inlet diameter, Venturi tube diameter and length of drainage tube) were built, and their linear regression equations were obtained. Results showed that increasing power and decreasing gas velocity both had positive effects on the increase of purity. The highest purity, 99.4%, was obtained when the power was 4 kW and the gas velocity was 3.5 m/s. Higher mixing degree of homogeneity contributed to better morphology, showing good dispersity and seldom agglomeration. The highest mixing degree of homogeneity was obtained when material inlet diameter and Venturi tube diameter were 7 mm and 11 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Wu, J. Li, M.X. Zhu, X.Z. Zhou and Y.X. Li, xitu, (2020). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=XTZZ202005001&uniplatform=NZKPT&v=q4iM3nJjKctdPUjdlplluxx2RqBmLb8z0354g8N0jHNEoBx6Ol7e5zmgMdJ0XgaL

  2. A. Chen, Z.F. Li, and Y. Chen, Chin. J. Mater. Res. 2, 888 (2017).

    Google Scholar 

  3. D. Ma, D. Sun, Y.J. Zou, S. Mao, Y.X. Lv, Y. Wang, J. Li and J.W. Shi. J. Colloid Interface Sci. (2019). https://www.sciencedirect.com/science/article/abs/pii/S0021979719305053

  4. Y.J. Mo, R.H. Guo, S.L. An, L.L. Guo, J.Y. Zhang and Z.G. Zhou, Chin. J. Inorg. Chem. (2018). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=WJHX201811006&uniplatform=NZKPT&v=lMh8MjTBwiHrMEuTphcqNFiA2Mld3NKkO7TF3ZE7RHCoMVusq8YU1OHy2ZcNKc6u

  5. X. Xu, Z.G. Chen, J.C. Qian, H. Sun and C.B. Liu, J. Suzhou Univ. Sci. Technol., Nat. Sci. Ed. (2019). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=TDSY201902008&uniplatform=NZKPT&v=uuqUWp2E91Dk9TbhK4z7FK4U_FUBgX1b1YAne9RItiK65KANnsJ7xCl2ahRrvBF4

  6. A. Sadeghi, H. Hassanzadeh and T. G. Harding, Int. J. Heat Mass Transfer (2017). https://www.sciencedirect.com/science/article/pii/S0017931017300285

  7. A. Sadeghi, H. Hassanzadeh and T. G. Harding, Chem. Eng. Sci. (2017). https://www.sciencedirect.com/science/article/pii/S0009250917304025

  8. Y.M. Wen, Z.Y. Shi, S.L. Wang, W.Z. Mu, P.G. Jonsson and W.H. Yang, Chem. Eng. J. (2021). https://www.sciencedirect.com/science/article/pii/S1385894721006550

  9. Y.M. Wen, S.L. Wang, W.Z. Mu, W.H. Yang and P.G. Jonsson, Fuel (2020). https://www.sciencedirect.com/science/article/pii/S0016236120311698

  10. C. Lv, Q.Y. Zhao, Z.M. Zhang, Z.H. Dou, T.A. Zhang and H.L. Zhao, Trans. Nonferrous Met. Soc. China (2015). https://www.sciencedirect.com/science/article/abs/pii/S1003632615636901

  11. C. Lv, Z.M. Zhang, Q.Y. Zhao, Z.H. Dou, T.A. Zhang and H.L. Zhao, Rare Met. (2015). https://springer.longhoe.net/article/https://doi.org/10.1007/s12598-015-0535-0

  12. Q.W. Yuan, X.Y. Jie and B. Ren, Int. J. Hydrogen Energy (2022). https://www.sciencedirect.com/science/article/abs/pii/S0360319922018262?via%3Dihub

  13. F. Zhang, Y.Q. Chen, S.N. Wei, Y.C. Si, H.L. Wang, R. Zhang, G. Wang, L.M. Song and B.B. Fan, Mater. Today Commun. (2022). https://www.sciencedirect.com/science/article/abs/pii/S2352492822007036?via%3Dihub

  14. J. Chen, Q. Jiang, K. Li, M. Omran, L. Gao and G. Chen, Chem. Eng. Process (2022). https://www.sciencedirect.com/science/article/abs/pii/S0255270121004578

  15. C. Lv, H.X. Yin, Y.L. Liu, X.X. Chen and M.H. Sun, Crystals (2022). https://www.mdpi.com/2073-4352/12/6/843

  16. W. Pan, L.R. Yang, H.M. **, R.G. Yi and Z.G. Liao, Process Saf. Environ. Prot. (2022). https://www.sciencedirect.com/science/article/abs/pii/S0957582022005638

  17. C. Lv, X. Lv, and Q.Y. Zhao, Chin. J. Rare Met. (2019). https://chn.oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=ZXJS202203011&dbname=CJFDLAST2022&uid=WEEvREcwSlJHSldSdmVqMDh6cEFFdDZCbFlkdzdNa2VNbEpPNDlIRUtPbz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4ggI8Fm4gTkoUKaID8j8gFw!!

  18. C. Lihua, S. Heyong, L. Pan, and L. Yong, Energy Power Eng 9, 204–215 https://doi.org/10.4236/epe.2017.94B025 (2017).

    Article  Google Scholar 

  19. L. Wei, H.Y. Pu, H. **ang and H. Wu, Nat. Gas. Chem. Ind. (2020). https://chn.oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=TRQH202003021&uniplatform=OVERSEA&v=Mnmn0KYh7wiz9jgm6hdhzVgmoM7glIAjiuCXlb5pPkG0M6-rRSKMY5zy5HR6j6yZ

  20. M.Y. Zhang and H.D, Cai, Su Liao K'o Chi. (2018). https://chn.oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=SLKJ201810032&uniplatform=OVERSEA&v=2a0GTGZngz32Ki7Bjgwg8w3BCQiwTPYv1GzpgeyJxGZ1EZlZ08PyaqCTUPBkmQ3L

  21. S.R. Yang, H.Q. Bai, C.F. Li, X.H. Zhang and Z.Q. Jia, Laser & Optoelectronics Progress (2023). https://chn.oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JGDJ20220615000&uniplatform=OVERSEA&v=cDi37wmKJEpOAXbDk3qOPGKyvX-vcUO0XpBgblDytvFhQF56qjyVgtopQw4DcOgR

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Lv or Hongliang Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 309 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Yin, H., Liu, Y. et al. Optimization Research on Preparation of CeO2 Using Microwave Heating Method Based on Regression Orthogonal Design. JOM 75, 2421–2429 (2023). https://doi.org/10.1007/s11837-022-05654-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05654-w

Navigation