Log in

Microstructure, Corrosion, and Biological Responses of Mg-Al-Zn-Sr-xCa Alloys for Bioresorbable Applications

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mg-Al-Zn-Sr-Ca alloys with varying calcium content were prepared and examined for biomedical applications. Microstructural observations indicated grain refinement and increased second phase precipitation with increasing Ca content. Immersion test, potentiodynamic polarization study, and impedance spectroscopy revealed that Ca content up to 1 wt.% improved the corrosion response of Mg-Al-Zn-Sr-Ca alloys studied in this work. Due to the combined effect of grain refinement, second phase precipitate barrier, and protective layer formation, the corrosion rate dropped from 1.84 mm/year in alloy Ca0.2 to 1.01 mm/year in alloy Ca1.0. Biocompatibility was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Ca1.0 showed the highest cell attachment and proliferation density. Ca formed Mg2Ca and improved the cell viability of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.M.R. Nuss and B. von Rechenberg, Open Orthop. J. 2, 66 (2008).

    Google Scholar 

  2. R.W. Westerman and B.E. Scammell, Surg. 30, 54 (2012).

    Google Scholar 

  3. M.D. Markel, Equine Fract. Repair (Wiley, New Jersey, 2019).

    Google Scholar 

  4. A.G. Dias, M.A. Lopes, I.R. Gibson, and J.D. Santos, J. Non. Cryst. Solids 330, 81 (2003).

    Google Scholar 

  5. H. Chai, L. Guo, X. Wang, Y. Fu, J. Guan, L. Tan, L. Ren, and K. Yang, J. Mater. Sci. Mater. Med. 22, 2525 (2011).

    Google Scholar 

  6. D. Ceroni, C. Grumetz, O. Desvachez, S. Pusateri, P. Dunand, and E. Samara, J. Child. Orthop. 10, 605 (2016).

    Google Scholar 

  7. M. Peron, J. Torgersen, and F. Berto, Metals (Basel). 7, (2017).

  8. M. Haseeb, M.F. Butt, T. Altaf, K. Muzaffar, A. Gupta, and A. Jallu, Int. J. Health Sci. (Qassim). 11, 1 (2017).

    Google Scholar 

  9. M.G. Seelig, Arch. Surg. 8, 669 (1924).

    Google Scholar 

  10. R. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Adv. Eng. Mater. 10, B3 (2008).

    Google Scholar 

  11. W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. **ao, and M. Ferry, Nat. Mater. 14, 1229 (2015).

    Google Scholar 

  12. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. **, Biomaterials 30, 484 (2009).

    Google Scholar 

  13. H.M. Wong, P. Chu, K. Cheung, K. Luk, and K. Yeung, Orthop. Proc. 96-B, 92 (2014).

    Google Scholar 

  14. M. Salahshoor and Y. Guo, Mater. (Basel, Switzerland) 5, 135 (2012).

    Google Scholar 

  15. V.S. Telang, R. Pemmada, V. Thomas, S. Ramakrishna, P. Tandon, and H.S. Nanda, Curr. Opin. Biomed. Eng. 17, 100264 (2021).

    Google Scholar 

  16. T. Zhu, Y. Yu, J. Yang, Y. Shen, L. He, and Y. **ong, Mater. Chem. Phys. 259, 124039 (2021).

    Google Scholar 

  17. S. Fajardo, J. Bosch, and G.S. Frankel, Corros. Sci. 146, 163 (2019).

    Google Scholar 

  18. G. Song and D. StJohn, Int. J. Cast Met. Res. 12, 327 (2000).

    Google Scholar 

  19. R.-C. Zeng, W.-C. Qi, F. Zhang, and S.-Q. Li, Regen. Biomater. 3, 49 (2016).

    Google Scholar 

  20. M. Razavi, M. Fathi, O. Savabi, D. Vashaee, and L. Tayebi, J. Biomed. Mater. Res. Part A 103, 1798 (2015).

    Google Scholar 

  21. N. Yang, F. Gong, B. Liu, Y. Hao, Y. Chao, H. Lei, X. Yang, Y. Gong, X. Wang, Z. Liu, and L. Cheng, Nat. Commun. 13, 2336 (2022).

    Google Scholar 

  22. K. Kubota, M. Mabuchi, and K. Higashi, J. Mater. Sci. 34, 2255 (1999).

    Google Scholar 

  23. A. Deschamps, F. Livet, and Y. Bréchet, Acta Mater. 47, 281 (1998).

    Google Scholar 

  24. M.L.M.N.S. Gupta, Magnesium, Magnesium Alloys, and Magnesium Composites (Wiley, New Jersey, 2011).

    Google Scholar 

  25. C.C. Willhite, N.A. Karyakina, R.A. Yokel, N. Yenugadhati, T.M. Wisniewski, I.M.F. Arnold, F. Momoli, and D. Krewski, Crit. Rev. Toxicol. 44(Suppl 4), 1 (2014).

    Google Scholar 

  26. K. Klotz, W. Weistenhöfer, F. Neff, A. Hartwig, C. van Thriel, and H. Drexler, Dtsch. Arztebl. Int. 114, 653 (2017).

    Google Scholar 

  27. H.S. Brar, J. Wong, and M.V. Manuel, J. Mech. Behav. Biomed. Mater. 7, 87 (2012).

    Google Scholar 

  28. D.M. Jiang, Z.Y. Cao, X. Sun, L. Guo, and J.G. Liu, Mater. Res. Innov. 17, 33 (2013).

    Google Scholar 

  29. E. Zhang, D. Yin, L. Xu, L. Yang, and K. Yang, Mater. Sci. Eng. C 29, 987 (2009).

    Google Scholar 

  30. D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák, Acta Biomater. 7, 3515 (2011).

    Google Scholar 

  31. M. Nagata and B. Lönnerdal, J. Nutr. Biochem. 22, 172 (2011).

    Google Scholar 

  32. M.M. Almoudi, A.S. Hussein, M.I. Abu Hassan, and N. Mohamad Zain, Saudi. Dent. J. 30, 283 (2018).

    Google Scholar 

  33. Y.C. Lee, A.K. Dahle, and D.H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000).

    Google Scholar 

  34. H. Pan, K. Pang, F. Cui, F. Ge, C. Man, X. Wang, and Z. Cui, Corros. Sci. 157, 420 (2019).

    Google Scholar 

  35. T. Mandal, S. Dasgupta, A. Barui, and S. Kundu, Mater. Sci. Technol. 38, 1134 (2022).

    Google Scholar 

  36. R.V. Suganthi, K. Elayaraja, M.I.A. Joshy, V.S. Chandra, E.K. Girija, and S.N. Kalkura, Mater. Sci. Eng. C 31, 593 (2011).

    Google Scholar 

  37. M. Bornapour, N. Muja, D. Shum-Tim, M. Cerruti, and M. Pekguleryuz, Acta Biomater. 9, 5319 (2013).

    Google Scholar 

  38. X. Zeng, Y. Wang, W. Ding, A.A. Luo, and A.K. Sachdev, Metall. Mater. Trans. A 37, 1333 (2006).

    Google Scholar 

  39. Y. Fan, G.H. Wu, and C.Q. Zhai, Mater. Sci. Forum. 546–549, 567 (2007).

  40. A.A. Gorustovich, T. Steimetz, R.L. Cabrini, and J.M. Porto López, J. Biomed. Mater. Res. Part A 92, 232 (2010).

    Google Scholar 

  41. Q. Huang, L. Liu, H. Wu, K. Li, N. Li, and Y. Liu, Mater. Sci. Eng. C 106, 110158 (2020).

    Google Scholar 

  42. P. Yin, N.F. Li, T. Lei, L. Liu, and C. Ouyang, J. Mater. Sci. Mater. Med. 24, 1365 (2013).

    Google Scholar 

  43. S.E. Harandi, M. Mirshahi, S. Koleini, M.H. Idris, H. Jafari, and M.R.A. Kadir, Mater. Res. 16, 11 (2013).

    Google Scholar 

  44. K. Hirai, H. Somekawa, Y. Takigawa, and K. Higashi, Mater. Sci. Eng. A 403, 276 (2005).

    Google Scholar 

  45. N. Erdmann, N. Angrisani, J. Reifenrath, A. Lucas, F. Thorey, D. Bormann, and A. Meyer-Lindenberg, Acta Biomater. 7, 1421 (2011).

    Google Scholar 

  46. Z. Li, X. Gu, S. Lou, and Y. Zheng, Biomaterials 29, 1329 (2008).

    Google Scholar 

  47. S.-S. Li, B. Tang, and D.-B. Zeng, J. Alloys Compd. 437, 317 (2007).

    Google Scholar 

  48. N.T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G.J. Dias, and M.P. Staiger, J. Biomed. Mater. Res. B. Appl. Biomater. 95, 91 (2010).

    Google Scholar 

  49. B. Zberg, P.J. Uggowitzer, and J.F. Löffler, Nat. Mater. 8, 887 (2009).

    Google Scholar 

  50. X. Zhao, L. Shi, and J. Xu, J. Mech. Behav. Biomed. Mater. 18, 181 (2013).

    Google Scholar 

  51. H.R.B. Rad, M.H. Idris, M.R.A. Kadir, and S. Farahany, Mater. Des. 33, 88 (2012).

    Google Scholar 

  52. Q. Peng, X. Li, N. Ma, R. Liu, and H. Zhang, J. Mech. Behav. Biomed. Mater. 10, 128 (2012).

    Google Scholar 

  53. M. Aljarrah, M. Medraj, X. Wang, E. Essadiqi, A. Muntasar, and G. Dénès, J. Alloys Compd. 436, 131 (2007).

    Google Scholar 

  54. M. Klinger, J. Appl. Crystallogr. 50, 1226 (2017).

    Google Scholar 

  55. Y. Zheng, Magnesium Alloys as Degradable Biomaterials, vol 328 (CRC Press, Boca Raton, 2016).

    Google Scholar 

  56. S. Izumi, M. Yamasaki, and Y. Kawamura, Corros. Sci. 51, 395 (2009).

    Google Scholar 

  57. G.L. Song and A. Atrens, Adv. Eng. Mater. 1, 11 (1999).

    Google Scholar 

  58. M. Mandal, A.P. Moon, G. Deo, C.L. Mendis, and K. Mondal, Corros. Sci. 78, 172 (2014).

    Google Scholar 

  59. B.-S. You, W.-W. Park, and I.-S. Chung, Scr. Mater. 42, 1089. (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukumar Kundu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, T., Dasgupta, S., Barui, A. et al. Microstructure, Corrosion, and Biological Responses of Mg-Al-Zn-Sr-xCa Alloys for Bioresorbable Applications. JOM 75, 2299–2313 (2023). https://doi.org/10.1007/s11837-022-05595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05595-4

Navigation