Log in

Electronic and Transport Properties of Covalent Functionalized Monolayer MoS2 by Ferrocene Derivatives

  • 2D Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have investigated the electronic and transport properties of a series of 2D Fc(X)n–MoS2 (Fc=Fe(Cp)2; X=SiH2, CH2, CH=CH, or C≡C; n = 1 or 2) systems by using ferrocene derivatives Fc(X)n to be grafted onto a MoS2 surface. Calculations have been carried out by density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods. All these Fc(X)n–MoS2 give type-II heterostructures, and the grafted Fc(X)n behaves as a quantum dot-like group. No matter which Fc(X)n group is introduced, the conductivity is improved. The current magnitudes at a certain bias voltage follow the sequence of Fc(C≡C)-MoS2 ≈ Fc(CH=CH)-MoS2 > Fc(SiH2)2-MoS2 ≈ Fc(SiH2)-MoS2 > Fc(CH2)2-MoS2 ≈ Fc(CH2)-MoS2, corresponding well to the abilities of supplying electrons from the (X)n group to MoS2. The armchair direction exhibits a larger current by about 4 times compared to the zigzag direction. A distinct NDR behavior is found for the Fc(C≡C)-MoS2, meaning that the transport channel can be electrically switched from the off state to the on state, and again turned to the off state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Ikeda, K. Tahara, T. Kadoya, H. Tajima, N. Toyoda, S. Yasuno, Y. Ozawa, and M. Abe, Langmuir 36, 5809 (2020).

    Article  Google Scholar 

  2. V.M. Santhini, O. Stetsovych, M. Ondráček, J.I. Mendieta Moreno, P. Mutombo, B. Torre, M. Švec, J. Klívar, I.G. Stará, H. Vázquez, I. Starý, and P. Jelínek, Adv. Funct. Mater. 31, 2006391 (2020).

    Article  Google Scholar 

  3. Y. Zhao, Y. Ding, J. Song, G. Li, G. Dong, J.B. Goodenough, and G. Yu, Angew. Chem. Int. Ed. 53, 11036 (2014).

    Article  Google Scholar 

  4. C. Jia, I.M. Grace, P. Wang, A. Almeshal, Z. Huang, Y. Wang, P. Chen, L. Wang, J. Zhou, Z. Feng, Z. Zhao, Y. Huang, C.J. Lambert, and X. Duan, Chem. 6, 1172 (2020).

    Article  Google Scholar 

  5. Y. Matsuura, Chem. Phys. Lett. 692, 174 (2018).

    Article  Google Scholar 

  6. X. Zhang, J. Wang, Y. Gao, and X.C. Zeng, ACS Nano 3, 537 (2009).

    Article  Google Scholar 

  7. R. Gomez Arrayas, J. Adrio, and J.C. Carretero, Angew. Chem. 45, 7674 (2006).

    Article  Google Scholar 

  8. E. Hillard, A. Vessières, L. Thouin, G. Jaouen, and C. Amatore, Angew. Chem. 118, 291 (2006).

    Article  Google Scholar 

  9. H. Skoupilova, M. Bartosik, L. Sommerova, J. Pinkas, T. Vaculovic, V. Kanicky, J. Karban, and R. Hrstka, Eur. J. Pharmacol. 867, 172825 (2020).

    Article  Google Scholar 

  10. F.A. Larik, A. Saeed, T.A. Fattah, U. Muqadar, and P.A. Channar, Appl. Organomet. Chem. 31, 1 (2017).

    Article  Google Scholar 

  11. K. Kanthasamy, M. Ring, D. Nettelroth, C. Tegenkamp, H. Butenschon, F. Pauly, and H. Pfnur, Small 12, 4849 (2016).

    Article  Google Scholar 

  12. B. Fabre, Acc. Chem. Res. 43, 1509 (2010).

    Article  Google Scholar 

  13. J.V. Barth, Annu. Rev. Phys. Chem. 58, 375 (2007).

    Article  Google Scholar 

  14. M. Ormaza, P. Abufager, N. Bachellier, R. Robles, M. Verot, T. Le Bahers, M.L. Bocquet, N. Lorente, and L. Limot, J. Phys. Chem. Lett. 6, 395 (2015).

    Article  Google Scholar 

  15. C. Fontanesi, M. Innocenti, D. Vanossi, and E. Da Como, Materials 10, 1109 (2017).

    Article  Google Scholar 

  16. S. Islam, and F. Wang, RSC Adv. 5, 11933 (2015).

    Article  Google Scholar 

  17. T. Chen, D. Wang, L.H. Gan, Y. Matsuo, J.Y. Gu, H.J. Yan, E. Nakamura, and L.J. Wan, J. Am. Chem. Soc. 136, 3184 (2014).

    Article  Google Scholar 

  18. L. Cosimbescu, X. Wei, M. Vijayakumar, W. Xu, M.L. Helm, S.D. Burton, C.M. Sorensen, J. Liu, V. Sprenkle, and W. Wang, Sci. Rep. 5, 14117 (2015).

    Article  Google Scholar 

  19. S. Yuan, S. Wang, Z. Kong, Z. Xu, L. Yang, D. Wang, Q. Ling, and Y. Wang, Micromachines. 9, 95 (2018).

    Article  Google Scholar 

  20. J. Berger, K. Kośmider, O. Stetsovych, M. Vondráček, P. Hapala, E.J. Spadafora, M. Švec, and P. Jelínek, The. J. Phys. Chem. C. 120, 21955 (2016).

    Article  Google Scholar 

  21. Y. Zhang, and M. Deng, J. Phys. Chem. C. 119, 21681 (2015).

    Article  Google Scholar 

  22. B. Özdamar, C. Massobrio, and M. Boero, J. Phys. Chem. C. 120, 13825 (2016).

    Article  Google Scholar 

  23. B.W. Heinrich, L. Limot, M.V. Rastei, C. Iacovita, J.P. Bucher, D.M. Djimbi, C. Massobrio, and M. Boero, Phys. Rev. Lett. 107, 216801 (2011).

    Article  Google Scholar 

  24. K.F. Braun, V. Iancu, N. Pertaya, K.H. Rieder, and S.W. Hla, Phys. Rev. Lett. 96, 246102 (2006).

    Article  Google Scholar 

  25. R.C. Quardokus, N.A. Wasio, R.P. Forrest, C.S. Lent, S.A. Corcelli, J.A. Christie, K.W. Henderson, and S.A. Kandel, Phys. Chem. Chem. Phys. 15, 6973 (2013).

    Article  Google Scholar 

  26. S. Nigar, H. Wang, M. Imtiaz, J. Yu, and Z. Zhou, Appl. Surf. Sci. 481, 1466 (2019).

    Article  Google Scholar 

  27. J.R. Reimers, Y. Wang, and D.S. Kosov, J. Phys. Chem. C. 123, 15569 (2019).

    Article  Google Scholar 

  28. C. Morari, I. Rungger, A.R. Rocha, S. Sanvito, S. Melinte, and G.-M. Rignanese, ACS Nano. 3, 4137 (2009).

    Article  Google Scholar 

  29. L. Laflör, F.A. Schlage, L. Kantorovich, P.J. Moriarty, M. Reichling, and P. Rahe, J. Phys. Chem. C. 124, 9900 (2020).

    Article  Google Scholar 

  30. G.S. Smith, S.K. Patra, L. Vanderark, S. Saithong, J.P.H. Charmant, and I. Manners, Macromol. Chem. Phys. 211, 303 (2010).

    Article  Google Scholar 

  31. F.H. Schacher, J. Elbert, S.K. Patra, S.F. Yusoff, M.A. Winnik, and I. Manners, Chem. Eur. J. 18, 517 (2012).

    Article  Google Scholar 

  32. N.P. Juraj, J. Le Pennec, B. Perić, and S.I. Kirin, Croat. Chem. Acta. 90, 613 (2017).

    Article  Google Scholar 

  33. A. Takai, D. Sakamaki, S. Seki, Y. Matsushita, and M. Takeuchi, Chem. Eur. J. 22, 7385 (2016).

    Article  Google Scholar 

  34. J. Wang, Z. Jiang, L. **e, M. Liu, and Y. Yuan, Microchim Acta. 184, 289 (2016).

    Article  Google Scholar 

  35. M. Čakić Semenčić, and L. Barišić, Croat. Chem. Acta. 90, 537 (2017).

    Article  Google Scholar 

  36. M.E. Welker, Molecules 23, 1551 (2018).

    Article  Google Scholar 

  37. M. Ormaza, R. Robles, N. Bachellier, P. Abufager, N. Lorente, and L. Limot, Nano Lett. 16, 588 (2016).

    Article  Google Scholar 

  38. B. Artetxe, A. Iturrospe, P. Vitoria, E.S. Ruiz-Bilbao, J. Garitaonandia, and J.M. Gutierrez-Zorrilla, Molecules. 23, 3150 (2018).

    Article  Google Scholar 

  39. Z. Yang, S. Liu, X. Liu, Y. Yang, X. Li, S. **ong, and B. Xu, J. Phys. Condens. Matter. 24, 445501 (2012).

    Article  Google Scholar 

  40. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).

    Article  Google Scholar 

  41. Y. Han, Y. Ge, Y. Chao, C. Wang, and G.G. Wallace, J. Energy. Chem. 27, 57 (2018).

    Article  Google Scholar 

  42. C.N. Rao, K. Gopalakrishnan, U. Maitra, and A.C.S. Appl, Mater. Interfaces. 7, 7809 (2015).

    Article  Google Scholar 

  43. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).

    Article  Google Scholar 

  44. S.G. Sørensen, H.G. Füchtbauer, A.K. Tuxen, A.S. Walton, and J.V. Lauritsen, ACS Nano 8, 6788 (2014).

    Article  Google Scholar 

  45. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).

    Article  Google Scholar 

  46. D. Lembke, S. Bertolazzi, and A. Kis, Acc. Chem. Res. 48, 100 (2015).

    Article  Google Scholar 

  47. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  Google Scholar 

  48. K. Lee, R. Gatensby, N. McEvoy, T. Hallam, and G.S. Duesberg, Adv. Mater. 25, 6699 (2013).

    Article  Google Scholar 

  49. M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, and J.-H. He, ACS Nano 8, 8317 (2014).

    Article  Google Scholar 

  50. V. Sorkin, H. Pan, H. Shi, S.Y. Quek, and Y.W. Zhang, Crit. Rev. Solid State Mater. Sci. 39, 319 (2014).

    Article  Google Scholar 

  51. J.C. Reed, A.Y. Zhu, F.Y. Hai Zhu, and E. Cubukcu, Nano Lett. 3, 1967 (2015).

    Article  Google Scholar 

  52. K.C. Knirsch, N.C. Berner, H.C. Nerl, C.S. Cucinotta, Z. Gholamvand, N. McEvoy, Z. Wang, I. Abramovic, P. Vecera, M. Halik, S. Sanvito, G.S. Duesberg, V. Nicolosi, F. Hauke, A. Hirsch, J.N. Coleman, and C. Backes, ACS Nano 9, 6018 (2015).

    Article  Google Scholar 

  53. J.I. Paredes, J.M. Munuera, S. Villar-Rodil, L. Guardia, M. Ayan-Varela, A. Pagan, S.D. Aznar-Cervantes, J.L. Cenis, A. Martinez-Alonso, J.M.D. Tascon, and A.C.S. Appl, Mater. Interfaces. 8, 27974 (2016).

    Article  Google Scholar 

  54. S.S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. Huang, and V.P. Dravid, J. Am. Chem. Soc. 135, 4584 (2013).

    Article  Google Scholar 

  55. P. Vishnoi, A. Sampath, U.V. Waghmare, and C.N. Rao, Chem. Eur. J. 23, 886 (2017).

    Article  Google Scholar 

  56. P. Wu, W. Li, Z. Liu, and Z. Cheng, J. Dispersion Sci. Technol. 39, 1742 (2018).

    Article  Google Scholar 

  57. E.E. Benson, H. Zhang, S.A. Schuman, S.U. Nanayakkara, N.D. Bronstein, S. Ferrere, J.L. Blackburn, and E.M. Miller, J. Am. Chem. Soc. 140, 441 (2018).

    Article  Google Scholar 

  58. B. Finney, Z. Fang, J.S. Francisco, and D.A. Dixon, J Phys Chem A. 120, 1691 (2016).

    Article  Google Scholar 

  59. S. Manjunatha, S. Rajesh, P. Vishnoi, and C.N.R. Rao, J. Mater. Res. 32, 2984 (2017).

    Article  Google Scholar 

  60. D. Kumar, B. Singh, R. Kumar, M. Kumar, and P. Kumar, J Phys Condens Matter. 32, 415702 (2020).

    Article  Google Scholar 

  61. M. Li, Y. Zhang, L. Wang, N. **, X. **n, X. **, and M. Wu, Mater. Res. Express. 7, 095002 (2020).

    Article  Google Scholar 

  62. V.K. Sangwan, H.N. Arnold, D. Jariwala, T.J. Marks, L.J. Lauhon, and M.C. Hersam, Nano Lett. 13, 4351 (2013).

    Article  Google Scholar 

  63. R. Yang, A. Islam, and P.X. Feng, Nanoscale 7, 19921 (2015).

    Article  Google Scholar 

  64. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B. 65, 165401 (2002).

    Article  Google Scholar 

  65. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.E. Lee, S.T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanpera, K. Jensen, M.L.N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys. Condens. Matter. 32, 015901 (2020).

    Article  Google Scholar 

  66. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys. Condens. Matter. 14, 2745 (2002).

    Article  Google Scholar 

  67. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  68. W.G. Wiel, T. Fujisawa, S. Tarucha, and L.P. Kouwenhoven, Jpn. J. Appl. Phys. 40, 2100 (2001).

    Article  Google Scholar 

  69. X. Chen, Y. **ong, and X. Zhang, Opt. Commun. 429, 18 (2018).

    Article  Google Scholar 

  70. A. Saffarzadeh, J. Appl. Phys. 103, 083705 (2008).

    Article  Google Scholar 

  71. L.G.C. Rego, and G. Kirczenow, Phys. Rev. B. 59, 13080 (1999).

    Article  Google Scholar 

  72. H.M. **a, J.W. Wu, and Z.P. Wang, J. Micromech. Microeng. 27, 075001 (2017).

    Article  Google Scholar 

  73. S. Rehman, H. Kim, H. Patil, and K.D. Kadam, Adv. Electron. Mater. 5, 2001237 (2021).

    Article  Google Scholar 

  74. R. Khurana, J. Mohanty, N. Padma, N. Barooah, and A.C. Bhasikuttan, Chem. Eur. J. 25, 13939 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant Nos. 51973046, 22108051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhang, G., Hu, Y. et al. Electronic and Transport Properties of Covalent Functionalized Monolayer MoS2 by Ferrocene Derivatives. JOM 75, 603–613 (2023). https://doi.org/10.1007/s11837-022-05494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05494-8

Navigation