Log in

Effect of SPS Sintering Process on Compressive Strength and Magnetic Properties of CoCuFeMnNi Bulk Alloy

  • Magnetic Materials for Multifunctional Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

CoCuFeMnNi bulk nanocrystalline alloy was prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The effects of sintering parameters, such as temperature, heating rate, sintering pressure, pressing time, and cooling mode on the compressive strength of bulk sintered alloys were analyzed, and the effects of sintering temperature and pressing time on the magnetic properties of the alloys were investigated. The compressive strength test results show that the compressive strength of the alloy first increases and then decreases with the increase of heating rate and pressing time. A model was established to study the mechanisms of mechanical properties of the CoCuFeMnNi alloy. The strengthening mechanisms such as grain refinement strengthening, solid solution strengthening, and cluster strengthening of CoCuFeMnNi alloy was quantitatively analyzed. The magnetic test results show that the prepared CoCuFeMnNi amorphous alloy powder and its bulk alloy are typical soft magnetic materials. The saturation magnetic induction strength of the bulk alloy increases with the increase of sintering temperature and pressing time. However, the coercivity first decreases and then increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Li, A. Wang, and C.T. Liu, J. Alloy. Compd. 694, 55. (2017).

    Article  Google Scholar 

  2. T.T. Zuo, M. Zhang, P.K. Liaw, and Y. Zhang, Intermetallics 100, 1. (2018).

    Article  Google Scholar 

  3. F. Alijani, M. Reihanian, and K. Gheisari, J. Alloy. Compd. 773, 623. (2019).

    Article  Google Scholar 

  4. Z.Q. Fu, B.E. Macdonald, A.D. Dupuy, X. Wang, T.C. Monson, R.E. Delaney, C.J. Pearce, K. Hu, Z.F. Jiang, Y.Z. Zhou, J.M. Schoenung, W.P. Chen, and E.J. Lavernia, Appl. Mater. Today. 15, 590. (2019).

    Article  Google Scholar 

  5. X.W. Nie, M.D. Cai, and S. Cai, Int. J. Refractory Met. Hard Mater 98, 105568. (2021).

    Article  Google Scholar 

  6. H. Shokrollahi and K. Janghorban, J. Mater. Process. Technol. 189, 1. (2007).

    Article  Google Scholar 

  7. R. Agarwal, R. Sonkusare, S.R. Jha, N.P. Gurao, K. Biswas, and N. Nayan, Mater. Des. 157, 539. (2018).

    Article  Google Scholar 

  8. K. Biswas Tazuddin and N.P. Gurao, Mater. Sci. Eng. A 657, 224. (2016).

    Article  Google Scholar 

  9. X.W. Nie and Q. Lu, Ceram. Int. 47, 19700. (2021).

    Article  Google Scholar 

  10. A. Tazuddin, N.P. Gurao, and K. Biswas, J. Alloys Compd. 697, 434. (2017).

    Article  Google Scholar 

  11. R. Sonkusare, P.D. Janani, N.P. Gurao, S. Sarkar, S. Sen, K.G. Pradeep, and K. Biswas, Mater. Chem. Phys. 210, 269. (2018).

    Article  Google Scholar 

  12. A. Takeuchi, T. Wada, and Y. Zhang, Intermetallics 82, 107. (2017).

    Article  Google Scholar 

  13. S.M. Oh and S.I. Hong, Mater. Chem. Phys. 210, 120. (2018).

    Google Scholar 

  14. R. Sonkusare, N. Khandelwal, P. Ghosh, K. Biswas, and N.P. Gurao, J. Mater. Res. 34, 732 (2019).

  15. R. Sonkusare, K. Biswas, N. A. Hamdany, H.G. Brokmeier, and R. Kalsar, Mater. Sci. Eng. A, 782, 139187. (2020).

  16. R. Sonkusare, R. Jain, K. Biswas, V. Parameswaran, and N.P. Gurao, J. Alloys Compd. 823, 153763. (2020).

  17. N. Prasad, N. Bibhanshu, N. Nayan, G.S. Avadhani, and S. Suwas, Journal of Materials Research 34, 744. (2019).

  18. B. E. MacDonald, Z. Fu, X. Wang, Z. Li, W. Chen, Y. Zhou, D. Raabe, J. Schoenung, H. Hahn, and E.J. Lavernia, Acta Mater. 181, 25. (2019).

  19. F. Bahadur, K. Biswas, and N.P. Gurao, International Journal of Fatigue 130, 105258. (2020).

  20. S. H. Shim, S. M. Oh, J. Lee, S.K. Hong, and S.I. Hong, Materials Science & Engineering A,762, 138129. (2019).

  21. X. Nie, and J. **ong, JOM 73, 2525. (2021).

  22. Y. Zou, Journal of Materials Research, 33, 3035. (2018).

  23. A.S. Sharma,S. Yadav,K. Biswas,and B. Basu, Materials Science and Engineering: R 131, 1. (2018).

  24. R.F. Zhao, B. Ren, G.P. Zhang, Z.X. Liu, B. Cai, and J. J. Zhang, Journal of Magnetism and Magnetic Materials 491, 165574. (2019).

  25. Q. Li, G. Wang, X. P. Song, L. Fang, and R. Liu, Journal of Materials Processing Technology. 209, 3285. (2009).

  26. Y. Zhang, P. Sharma, and A. Makino, Materials Transactions, 52, 2254. (2011)

  27. S. Lee, H. Kato, T. Kubota, A. Makino, and A. Inoue, Intermet, 17, 218. (2009).

  28. Z.Y. **ao, C.Y. Tang, H.D. Zhao, and D. Tong, J Non-Cryst Solids 358, 114. (2012).

  29. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Acta Mater. 62, 105. (2014).

  30. X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233. (2012).

    Article  Google Scholar 

  31. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505. (2011).

  32. A. Sourav, S. Yebaji, and S. Thangaraju, Materials Science & Engineering A, 793, 139877. (2020).

  33. Q. Liu, G. Wang, X. Sui, Y. Liu, X. Li, and J. Yang, J. Mater. Sci. Technol. 35, 2600. (2019).

    Article  Google Scholar 

  34. Y. Long, X.B. Liang, K. Su, H.Y. Peng, and X.Z. Li, J. Alloy. Compd. 780, 607. (2019).

  35. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, Mater. Sci. Eng. A 712, 616. (2018).

    Article  Google Scholar 

  36. Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, and Z.P. Lu, Nat. Mater. 563, 546. (2018).

  37. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1. (2014).

  38. X.W. Nie, Y. Du, and H.H. Xu, Phil. Mag. Lett. 91, 328. (2011).

    Article  Google Scholar 

  39. U.F. Kocks, Metal. Mater. Trans. 1, 1121. (1970).

    Article  Google Scholar 

  40. E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, and L. Vitos, Int. J. Refract. Met. Hard Mater. 47, 131. (2014).

  41. H. Wen, T.D. Top**, D. Isheim, D.N. Seidman, and E.J. Lavernia, Acta Mater. 61, 2769. (2013).

  42. S.Y. Sun, H.L. Shang, B.Y. Ma, F. Chen, and G.Y. Li, Comput. Mater. Sci. 142, 325. (2018).

    Article  Google Scholar 

  43. Z.P. Wang, Q.H. Fang, J. Lia, B. Liu, and Y. Liu, J. Mater. Sci. Technol. 34, 349. (2018).

  44. J.Y. Pan, T. Dai, T. Lu, X.Y. Ni, J.W. Dai, and M. Li, Mater. Sci. Eng. A 738, 362. (2018).

    Article  Google Scholar 

  45. T. Shanmugasundaram, E. Bouzy, and A.H. Chokshi, Mater. Sci. Eng. 639, 97. (2015).

    Article  Google Scholar 

  46. P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. **a, Scr. Mater. 66, 785. (2012).

  47. Z.M. Jiao, M.Y. Chu, H.J. Yang, Z.H. Wang, and J.W. Qiao, Mater. Sci. Technol. 31, 1244. (2015).

    Article  Google Scholar 

  48. M. Li, J. Gazquez, A. Borisevich, R. Mishra, and K.M. Flores, Intermetallics 95, 110. (2018).

  49. X. Nie, Y. Du, and H. Xu, Physica B 405, 4279. (2010).

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Project No.: 51304247), Natural Science Foundation of Hunan Province (Project No.: 2019JJ70050) and Scientific Research Project of Colleges and Universities in Hunan Province (Project No.: 19C0557).

Author information

Authors and Affiliations

Authors

Contributions

XN devised the project and conceived of the presented idea. SM prepared the specimens and developed the experimental work and performed the mechanical testing and analysis. AM evaluated and analyzed the microstructures. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to **aowu Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Sheng, M. & Mabi, A. Effect of SPS Sintering Process on Compressive Strength and Magnetic Properties of CoCuFeMnNi Bulk Alloy. JOM 74, 2665–2675 (2022). https://doi.org/10.1007/s11837-022-05277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05277-1

Navigation