Log in

β-Phase Stability of Two Biomedical β-Titanium Alloys During Severe Plastic Deformation

  • Metastable Phases and Phase Equilibria
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The β-phase stability and deformation behavior patterns of two β-type titanium bioalloys, viz. Ti-Nb-Ta-Zr (TNTZ) type and Ti-Nb-Ta (TNT) type, processed by a series of intense plastic deformations have been investigated theoretically and experimentally. Firstly, theoretical analysis was carried out, including an estimation of possible deformation mechanisms based on the electronic parameters of the studied alloys identified with the aid of the Bo–Md diagram. Secondly, phase composition and structural parameters determined by x-ray diffraction (XRD) analysis revealed that the application of severe plastic deformation (SPD) induces grain refinement (in particular for one of the two alloys), accompanied by residual stress generation and some partial phase transformation. Scanning electron microscopy (SEM)/transmission electron microscopy (TEM) imaging and some measurements of the texture completed the deformation behavior analysis. TNT alloy, with higher β stability (Moeq ~ 12.5 wt.%), presented an almost unmodified β-grain dimension from 29.4 nm to 24.4 nm (and thus poor β-grain refinement), coupled with a very fine dispersion of nanometric (~ 8.4 nm) crystallites of orthorhombic α″-stress-induced martensite. TNTZ alloy, also with high β stability (Moeq ~ 10.1 wt.%), showed accentuated β-grain refinement (from 27.8 nm to 9.9 nm), with a very small amount of orthorhombic α″-stress-induced martensite, but grain dimensions almost three times larger than that of the TNT alloy (~ 20.8 nm). The theoretical estimations concerning the possible deformation mechanisms are supported by the analysis of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Ref. 16).

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Wang, J. Zhao, S. Dai, F. Chen, X. Yu, and Y. Zhang, J. Mech. Behavior. Biomed. Mater. 27, 33 (2013).

    Article  Google Scholar 

  2. Y. Yang, S.Q. Wu, and G.P. Li, Acta Mater. 58, 2778 (2010).

    Article  Google Scholar 

  3. J. Hwang, S. Kuramoto, T. Furuta, K. Nishino, and T. Saito, J. Mater. Eng. Perform. 14, 747 (2005).

    Article  Google Scholar 

  4. L.Q. Wang, G.J. Yang, and H.B. Yang, Rare Metal Mater. Eng. 38, 0579 (2009).

    Article  Google Scholar 

  5. Y. Zheng, R.E.A. Williams, S. Nag, R. Banerjee, H.L. Fraser, and D. Banerjee, Scr. Mater. 116, 49 (2016).

    Article  Google Scholar 

  6. H. Wang, X. Yuan, K. Wu, C. Xu, Y. Jiao, W. Ge, and J. Luo, J. Mater. Process. Tech. 255, 76 (2018).

    Article  Google Scholar 

  7. D. Raducanu, V.D. Cojocaru, A. Nocivin, I. Cinca, N. Serban, and E.M. Cojocaru, JOM 71, 264 (2019).

    Article  Google Scholar 

  8. M. Niinomi, M. Nakai, M. Hendrickson, P. Nandwana, T. Alam, D. Choudhuri, and R. Banerjee, Scr. Mater. 123, 144 (2016).

    Article  Google Scholar 

  9. J.I. Qazi, B. Marquardt, and H.J. Rack, JOM 57, 5 (2005).

    Article  Google Scholar 

  10. D. Raabe, B. Sander, M. Friák, D. Ma, and J. Neugebauer, Acta Mater. 55, 4475 (2007).

    Article  Google Scholar 

  11. D. Zhao, T. Ebel, M. Yan, and M. Qian, JOM 67, 2236 (2015).

    Article  Google Scholar 

  12. I. Kopova, J. Stráský, P. Harcuba, M. Landa, M. Janeček, and L. Bačákova, Mater. Sci. Eng., C 60, 230 (2016).

    Article  Google Scholar 

  13. L.A. Matlakhova, A.N. Matlakhova, S.N. Monteiro, S.G. Fedotov, and B.A. Goncharenko, Mater. Sci. Eng., A 393, 320 (2005).

    Article  Google Scholar 

  14. Y.L. Zhou, M. Niinomi, and T. Akahori, Mater. Sci. Eng., A 371, 283 (2004).

    Article  Google Scholar 

  15. M. Morinaga, N. Yukawa, T. Maya, K. Sone, and H. Adachi, Theoretical design of titanium alloys, in Sixth World Conference on Titanium: Proceedings, Cannes, June 6–9, 1988, Société Française de Metallurgié, edited by P. Lacombe, R. Tricot, and G. Beranger, Cedex, France: Les Editions de Physique, ©1989.

  16. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, Scr. Mater. 55, 477 (2006).

    Article  Google Scholar 

  17. R.P. Kolli, W.J. Joost, and S. Ankem, JOM 67, 1273 (2015).

    Article  Google Scholar 

  18. H.Y. Kim, S. Hashimoto, J.I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Mater. Sci. Eng., A 417, 120 (2006).

    Article  Google Scholar 

  19. J. Sun, Q. Ke, and W. Chen, J. Mater. Process. Technol. 264, 119 (2019). https://doi.org/10.1016/j.jmatprotec.2018.09.002.

    Article  Google Scholar 

  20. I.P. Semenova, A.V. Polyakov, V.V. Polyakova, Y. Huang, R.Z. Valiev, and T.G. Langdon, Adv. Eng. Mater. 18, 2057 (2016).

    Article  Google Scholar 

  21. M.J. Kriegel, M. Rudolph, A. Kilmametov, B.B. Straumal, J. Ivanisenko, O. Fabrichnaya, H. Hahn, and D. Rafaja, Metals 10, 402 (2020). https://doi.org/10.3390/met10030402.

    Article  Google Scholar 

  22. D. Raducanu, V.D. Cojocaru, A. Nocivin, D.M. Gordin, and I. Cinca, Mater. Sci. Eng., A 689, 25 (2017).

    Article  Google Scholar 

  23. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 (2010).

    Article  Google Scholar 

  24. F. Bachmann, R. Hielscher, P.E. Jupp, W. Pantleon, H. Schaeben, and E. Wegert, J. Appl. Crystall. 43, 1338 (2010).

    Article  Google Scholar 

  25. T. Zhou, M. Aindow, S.P. Alpay, M.J. Blackburn, and M.H. Wu, Scr. Mater. 50, 343 (2004).

    Article  Google Scholar 

  26. P.J. Bania, J. Metal 41, 16 (1994).

    Google Scholar 

  27. J. Azadmanjiri, C.C. Berndt, A. Kapoor, and C. Wen, Crit. Rev. Solid State Mater. Sci. 40, 164 (2015). https://doi.org/10.1080/10408436.2014.978446.

    Article  Google Scholar 

  28. X.Y. Shi, Y. Liu, D.J. Li, B. Chen, X.Q. Zeng, J. Lu, and W.J. Ding, Mater. Sci. Eng., A 630, 146 (2015).

    Article  Google Scholar 

  29. C.X. Ren, Q. Wang, Z.J. Zhang, Y.K. Zhu, and Z.F. Zhang, Acta. Metall. Sin. (Engl. Lett.) 30, 212 (2017).

    Article  Google Scholar 

  30. S. Neelakantan, R. Rivera-Diaz-del-Castillo, and S. van der Zwaag, Scr. Mater. 60, 611 (2009).

    Article  Google Scholar 

  31. N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, and H. Toda, Mater. Sci. Eng., C 25, 363 (2005).

    Article  Google Scholar 

  32. N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, and H. Toda, Mater. Sci. Eng., C 25, 370 (2005).

    Article  Google Scholar 

  33. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).

    Article  Google Scholar 

  34. L.R. Ribeiro, R.C. Junior, F.F. Cardoso, R.B.F. Filho, and L.G. Vaz, J. Mater. Sci. 20, 1629 (2009).

    Google Scholar 

  35. N.V. Kazantseva, V.P. Pilyugin, S.E. Danilov, and VYu Kolosov, Phys. Metals Metallogr. 116, 501 (2015).

    Article  Google Scholar 

  36. Y. Horiuchi, T. Inamura, H. Young Kim, S. Miyazaki, K. Wakashima, and H. Hosoda, Mater. Trans. 47, 1209 (2006).

    Article  Google Scholar 

  37. A. Nocivin, D. Raducanu, I. Cinca, C. Trisca-Rusu, M. Butu, I. Thibon, and V.D. Cojocaru, J. Mater. Eng. Perform. 24, 1587 (2015).

    Article  Google Scholar 

  38. M. Holscher, D. Raabe, and K. Lucke, Acta Metall. Mater. 42, 879 (1994).

    Article  Google Scholar 

  39. D. Raabe and K. Lucke, Mater. Sci. Technol. 9, 302 (1993).

    Article  Google Scholar 

  40. B. Sander and D. Raabe, Mater. Sci. Eng., A 479, 236 (2008).

    Article  Google Scholar 

  41. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mater. Sci. Eng., A 243, 244 (1998).

    Article  Google Scholar 

  42. M. Abdel-Hady Gepreel and M. Niinomi, J. Mech. Behav. Biomed. Mater. 20, 407 (2013).

    Article  Google Scholar 

  43. S. Ozan, J. Lin, Y. Li, and C. Wen, J. Mech. Behav. Biomed. Mater. 75, 119 (2017).

    Article  Google Scholar 

  44. M. Gouda, M. Abdel-Hady Geprel, K. Yamanaka, H. Bian, K. Nakamura, and A. Chiba, JOM (2019). https://doi.org/10.1007/s11837-019-03690-7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this research by the Romanian National Authority for Scientific Research CCCDI–UEFISCDI, Project PN-III, no. 112PED/2017-2018, and Project PNCDI III–Eranet-Manunet-III, no. 143/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Nocivin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raducanu, D., Cojocaru, V.D., Nocivin, A. et al. β-Phase Stability of Two Biomedical β-Titanium Alloys During Severe Plastic Deformation. JOM 72, 2937–2948 (2020). https://doi.org/10.1007/s11837-020-04235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04235-z

Navigation