Log in

Effect of Prior Austenite Grain Size on Hole Expansion Ratio of Quenching and Partitioning Processed Medium-Mn Steel

  • Advanced High-Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of the prior austenite grain size (PAGS) on the tensile properties and hole expansion ratio (HER) has been investigated. Starting from different PAGS values (4.7 μm and 15.2 μm) obtained by controlling the austenitizing temperature, microstructure consisting of martensite and austenite (Vγ of 0.09–0.18) was produced by the quenching and partitioning process. Increasing Vγ had a beneficial influence on the tensile elongation regardless of the PAGS, but deteriorated the HER. However, larger PGAS alleviated the degradation of the HER. The major influence of a larger PAGS on the HER results from the decreased population of interface between neighboring martensite in the shear-affected zone, because that interface is revealed to be a major site for void formation during hole expansion testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Liu, B.B. He, G.J. Cheng, H.W. Yen, and M.X. Huang, Scr. Mater. 150, 1 (2018).

    Article  Google Scholar 

  2. E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman, Acta Mater. 113, 124–139 (2016).

    Article  Google Scholar 

  3. L. Cho, E.J. Seo, and B.C. De Cooman, Scr. Mater. 123, 69 (2016).

    Article  Google Scholar 

  4. E.J. Seo, L. Cho, and B.C. De Cooman, Metall. Mater. Trans. A 45, 4022 (2014).

    Article  Google Scholar 

  5. B.C. De Cooman, S.J. Lee, S. Shin, E.J. Seo, and J.G. Speer, Metall. Mater. Trans. A 48, 39 (2017).

    Article  Google Scholar 

  6. A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam-Abian, H. Ding, D. Han, and N. Kheradmand, Mater. Sci. Eng., A 725, 341 (2018).

    Article  Google Scholar 

  7. D.T. Pierce, D.R. Coughlin, K.D. Clarke, E. De Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, and A.J. Clarke, Acta Mater. 151, 454 (2018).

    Article  Google Scholar 

  8. E.J. Seo, L. Cho, and B.C. De Cooman, Metall. Mater. Trans. A 46, 27 (2015).

    Article  Google Scholar 

  9. J.H. Kim, E.J. Seo, M.-H. Kwon, S. Kang, and B.C. De Cooman, Mater. Sci. Eng., A 729, 276 (2018).

    Article  Google Scholar 

  10. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Acta Mater. 53, 5439 (2005).

    Article  Google Scholar 

  11. B. Holmes and D. Dyson, J. Iron Steel Inst. 208, 469 (1970).

    Google Scholar 

  12. J.J. Lee, S.W. Jung, and K.S. Yoo, Anal. Sci. 7, 493 (1994).

    Google Scholar 

  13. H.-S. Yang and H.K.D.H. Bhadeshia, Scr. Mater. 60, 493 (2009).

    Article  Google Scholar 

  14. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Mater. Sci. Eng., A 438, 25 (2006).

    Article  Google Scholar 

  15. A. Standard, E112, 2010, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken (2010). https://doi.org/10.1520/e0112-10.

  16. Y. Toji, G. Miyamoto, and D. Raabe, Acta Mater. 86, 137 (2015).

    Article  Google Scholar 

  17. Y.J. Li, D. Ponge, P. Choi, and D. Raabe, Scr. Mater. 96, 13 (2015).

    Article  Google Scholar 

  18. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, and B. Hwang, Acta Mater. 122, 199 (2017).

    Article  Google Scholar 

  19. Y.J. Li, D. Ponge, P. Choi, and D. Raabe, Ultramicroscopy 159, 240 (2015).

    Article  Google Scholar 

  20. L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, and D. Raabe, Acta Mater. 60, 2790 (2012).

    Article  Google Scholar 

  21. G. Krauss, Mater. Sci. Eng., A 273-275, 40 (1999).

    Article  Google Scholar 

  22. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98, 81 (2015).

    Article  Google Scholar 

  23. M. Miller, P. Beaven, S. Brenner, and G. Smith, Metall. Trans. A 14, 1021 (1983).

    Article  Google Scholar 

  24. S. Morito, H. Yoshida, T. Maki, and X. Huang, Mater. Sci. Eng., A 438–440, 237 (2006).

    Article  Google Scholar 

  25. C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Scr. Mater. 58, 492 (2008).

    Article  Google Scholar 

  26. T. Simm, L. Sun, S. McAdam, P. Hill, M. Rawson, and K. Perkins, Materials 10, 730 (2017).

    Article  Google Scholar 

  27. S. Matsuda, T. Inoue, H. Mimura, and Y. Okamura, Climax Molybdenum Development Company Ltd. pp. 45–66 (1971).

  28. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, Acta Mater. 54, 5323 (2006).

    Article  Google Scholar 

  29. C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and K. Sun, Mater. Sci. Eng., A 534, 339 (2012).

    Article  Google Scholar 

  30. B.S. Levy and C.J. Van Tyne, J. Mater. Eng. Perform. 21, 1205 (2012).

    Article  Google Scholar 

  31. M. Mukherjee, S. Tiwari, and B. Bhattacharya, Int. J. Miner., Metall. Mater. 25, 199 (2018).

    Article  Google Scholar 

  32. K.-I. Sugimoto, A. Nagasaka, M. Kobayashi, and S.-I. Hashimoto, ISIJ Int. 39, 56 (1999).

    Article  Google Scholar 

  33. K.-I. Sugimoto, T. Iida, J. Sakaguchi, and T. Kashima, ISIJ Int. 40, 902 (2000).

    Article  Google Scholar 

  34. A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, and A. Pichler, Steel Res. Int. 80, 71 (2009).

    Google Scholar 

  35. K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, ISIJ Int. 44, 603 (2004).

    Article  Google Scholar 

  36. I. Pushkareva, S. Allain, C. Scott, A. Redjaïmia, and A. Moulin, ISIJ Int. 55, 2237 (2015).

    Article  Google Scholar 

  37. J. Lee, S.-J. Lee, and B.C. De Cooman, Mater. Sci. Eng., A 536, 231 (2012).

    Article  Google Scholar 

  38. B.S. Levy, M. Gibbs, and C.J. Van Tyne, Metall. Mater. Trans. A 44, 3635 (2013).

    Article  Google Scholar 

  39. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 4th ed., ed. H. Bhadeshia and R. Honeycombe (Oxford: Butterworth-Heinemann, 2017), pp. 135–177.

    Chapter  Google Scholar 

  40. E.J. Seo, L. Cho, and B.C. De Cooman, Acta Mater. 107, 354 (2016).

    Article  Google Scholar 

  41. N.H. Heo, J.W. Nam, Y.U. Heo, and S.J. Kim, Acta Mater. 61, 4022 (2013).

    Article  Google Scholar 

  42. X. Fang, Z. Fan, B. Ralph, P. Evans, and R. Underhill, J. Mater. Sci. 38, 3877 (2003).

    Article  Google Scholar 

  43. R.A. Grange, C.R. Hribal, and L.F. Porter, Metall. Mater. Trans. A 8, 1775 (1977).

    Article  Google Scholar 

  44. T. Ohmura, K. Tsuzaki, and S. Matsuoka, Scr. Mater. 45, 889 (2001).

    Article  Google Scholar 

  45. S. Chatterjee and H. Bhadeshia, Mater. Sci. Technol. 23, 606 (2007).

    Article  Google Scholar 

  46. S. Sadagopan and D. Urban, AISI/DOE technology roadmap program (2003).

  47. X. Chen, H. Jiang, Z. Cui, C. Lian, and C. Lu, Procedia Eng. 81, 718 (2014).

    Article  Google Scholar 

  48. S.K. Paul, J. Mater. Eng. Perform. 23, 3610 (2014).

    Article  Google Scholar 

  49. X.C. **ong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scr. Mater. 68, 321 (2013).

    Article  Google Scholar 

  50. K.-I. Sugimoto, J. Sakaguchi, T. Iida, and T. Kashima, ISIJ Int. 40, 920 (2000).

    Article  Google Scholar 

  51. J.I. Kim, POSTECH GIFT Doctoral Dissertation (2017).

  52. Z.Z. Zhao, H.X. Yin, A.M. Zhao, Z.Q. Gong, J.G. He, T.T. Tong, and H.J. Hu, Mater. Sci. Eng., A 613, 8–16 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from POSCO Technical Research Laboratories (South Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Lee, S.W., Lee, K. et al. Effect of Prior Austenite Grain Size on Hole Expansion Ratio of Quenching and Partitioning Processed Medium-Mn Steel. JOM 71, 1366–1374 (2019). https://doi.org/10.1007/s11837-019-03332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03332-y

Navigation