Log in

Ultrafine-grained microstructures evolving during severe plastic deformation

  • Overview
  • Nanoscale Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructures of ultrafine-grained nanostructured materials developed by severe plastic deformation are widely varied in their grain size and grain-size distribution; grain boundaries and their structures; lattice defects, especially dislocations; point defects; and impurities. All of these features can be influenced by the way severe plastic deformation is applied, and thereby have decisive effects on the physical and mechanical properties of the material. Probably, the most important factors determining microstructure are the imposed stress tensor, the degree and rate of strain, the temperature of deformation, the chemical composition of the deformed material, and the type of crystal lattice, showing that in order to develop specific properties, it is crucial to understand and optimize the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Progr. Mater. Sci., 45 (2) (2000), p. 103.

    Article  CAS  Google Scholar 

  2. Z. Horita et al., Mater. Sci. Forum, 204–206 (1996), p. 437.

    Article  Google Scholar 

  3. Z. Horita et al., J. Mater. Res., 13 (1998), p. 446.

    Article  CAS  Google Scholar 

  4. K. Zhang et al., J. Appl. Phys., 84 (1998), p. 1924.

    Article  CAS  Google Scholar 

  5. T. Ungár and A. Borbély, Appl. Phys. Letters, 69 (1996), p. 3173.

    Article  Google Scholar 

  6. T. Ungár et al., J. Appl. Cryst., 32 (1999), p. 992.

    Article  Google Scholar 

  7. T. Ungár and M. Zehetbauer, Scripta Mater., 35 (1996), p. 1467.

    Article  Google Scholar 

  8. M. Zehetbauer et al., Acta Mater., 47 (1999), p. 1053.

    Article  CAS  Google Scholar 

  9. J. Gil Sevillano, P. van Houtte, and E. Aernoudt, Progr. Mater. Sci., 25 (1980), p. 2.

    Article  Google Scholar 

  10. M. Zehetbauer and V. Seumer, Acta Metall. Mater., 41 (1993), p. 577.

    Article  CAS  Google Scholar 

  11. H.P. Stüwe, Z. Metallk., 56 (1965), p. 633.

    Google Scholar 

  12. I. Kovács, Acta Met., 15 (1967), p. 1731.

    Article  Google Scholar 

  13. J.M. Alberdi (Ph.D. thesis, University of Navarra, 1984).

  14. D.A. Hughes, J.C. Gibeling, and W. Nix, Proc. 7th ICSMA, ed. H.J. McQueen et al. (Oxford, U.K.: Pergamon, 1985) p. 105.

    Google Scholar 

  15. M. Müller et al., Scripta Metall. Mater., 35 (1996), p. 1461.

    Google Scholar 

  16. A.D. Rollett (Ph.D. thesis, Drexel University, 1988).

  17. P. Haasen, J. Phys. France, 50 (1989), p. 2445.

    Google Scholar 

  18. D. Kuhlmann-Wilsdorf, Mat. Sci. Eng., A113 (1989), p. 1.

    CAS  Google Scholar 

  19. A.S. Argon and P. Haasen, Acta Metall. Mater., 41 (1993), p. 3289.

    Article  CAS  Google Scholar 

  20. M. Zehetbauer, Acta Metall. Mater., 41 (1993), p. 589.

    Article  CAS  Google Scholar 

  21. Y. Estrin et al., Acta Mater., 46 (1998), p. 5509.

    Article  CAS  Google Scholar 

  22. H. Mughrabi et al., Phil. Mag., 53 (1986), p. 793.

    CAS  Google Scholar 

  23. T. Ungár et al., Phil. Mag., 64 (1991), p. 495.

    Google Scholar 

  24. H. Mughrabi, Acta Metall., 31 (1983), p. 1367.

    Article  CAS  Google Scholar 

  25. D.A. Hughes and N. Hansen, Metall. Trans., 24A (1993), p. 2021.

    CAS  Google Scholar 

  26. M. Zehetbauer and P. Les, Kovove Materialy (Metallic Materials), 36 (1998), p. 153.

    CAS  Google Scholar 

  27. M.A. Krivoglaz, Theory of X-ray and Thermal Neutron Scattering by Real Crystals (New York: Plenum Press, 1969); X-ray and Neutron Diffraction in Nonideal Crystals (Berlin Heidelberg New York: Springer-Verlag, 1996).

    Google Scholar 

  28. P. Suortti, The Rietveld Method, vol. 5, ed. R.A. Young (London: Oxford University Press, 1993), pp. 167–185.

    Google Scholar 

  29. R. Kuzel, Jr. and P. Klimanek, J. Appl. Cryst., 22 (1989), p. 299.

    Article  CAS  Google Scholar 

  30. G.K. Williamson and W.H. Hall, Acta Metall., 1 (1953), p. 22.

    Article  CAS  Google Scholar 

  31. B.E. Warren, Progr. Metal Phys., 8 (1959), p. 147.

    Article  CAS  Google Scholar 

  32. T. Ungár and G. Tichy, Phys. Stat. Sol. (a), 171 (1999), p. 425.

    Article  Google Scholar 

  33. M. Wilkens, Phys. Stat. Sol. (a), 104 (1987), p. K1.

  34. T. Ungár and G. Ribárik, to be published.

  35. T. Ungár et al., Nanostructured Mater., 11 (1999), p. 103.

    Article  Google Scholar 

  36. P. Debye, Verh. Deutsch. Phys. Ges., 15 (1913), pp. 678, 738, 857.

    Google Scholar 

  37. I. Waller, Zeitschr. Physik, 17 (1923), p. 398.

    Article  CAS  Google Scholar 

  38. B.E. Warren, X-ray Diffraction (Reading MA: Addison-Wesley, 1969), pp. 151–203.

    Google Scholar 

  39. I.V. Alexandrov et al., Proc. Int. Conf. Textures of materials, ICOTOM-11, ed. Z. Liang, L. Zuo, and Y. Chu Bei**g: Int. Acad. Pub., 1996), p. 929.

    Google Scholar 

  40. S.S. Xu, X-ray Diffraction in Metals (Ithaca, Shanghai: Science Technical Publication Press, 1962).

    Google Scholar 

  41. R.W. James, The Optical Principles of the Diffraction of X-ray (Ithaca, NY: Cornell University Press, 1965).

    Google Scholar 

  42. I. Kopacz et al., to be published.

  43. K. Zhang et al., J. Appl. Phys., 80 (1996), p. 5617.

    Article  CAS  Google Scholar 

  44. K. Zhang et al., J. Phys. D, 30 (1997), p. 3008.

    Article  CAS  Google Scholar 

  45. K. Zhang, I.V. Alexandrov, and K. Lu, NanoStructured Materials, 9 (1997), p. 347.

    Article  CAS  Google Scholar 

  46. I.V. Alexandrov et al., Mater. Sci. Eng., A, 234–236 (1997), p. 331.

    Google Scholar 

  47. I.V. Alexandrov and R.Z. Valiev, Philos. Mag. B, 73 (1996), p. 861.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact T. Ungár, Department of General Physics, Eötvös University Budapest, H-1518, P.O.B. 32, Budapest, Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungár, T., Alexandrov, I. & Zehetbauer, M. Ultrafine-grained microstructures evolving during severe plastic deformation. JOM 52, 34–36 (2000). https://doi.org/10.1007/s11837-000-0129-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0129-6

Keywords

Navigation