Log in

Screening candidate effectors from the salivary gland transcriptomes of brown citrus aphid, Aphis citricidus

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The brown citrus aphid, Aphis citricidus, stands out as an important citrus pest that is an efficient vector for Citrus tristeza virus (CTV), the causal agent of important economic losses in citrus. Evidence suggests that aphids deliver salivary effector proteins inside their host cells to modulate plant physiology, suppress defense responses, and consequently favor the establishment and infestation. This study employed deep sequencing of RNA libraries to create a transcriptome of the salivary gland. Screening the transcriptome identified 115 unigenes encoding putatively secreted effector proteins. Eleven A. citricidus effectors exhibiting relatively low sequence identities were selected for gene expression analysis. Among them, six effectors (i.e., AcE1, AcE2, AcE3, AcE5, AcE8, and AcE9) displayed remarkably high expression levels in the head with salivary glands; AcE4 was highly expressed in both head and gut tissue. Further transient overexpression revealed that AcE4 could effectively inhibit INF1/BAX-induced leaf chlorosis in Nicotiana benthamiana leaves, implying its potential role in inhibiting plant defense mechanisms against aphid feeding. The findings of this study demonstrate the in silico identification of effector proteins from A. citricidus. Further investigation and analysis of these effectors, like as AcE4, will provide valuable knowledge regarding the molecular mechanisms that govern the interaction between aphids and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its additional files.

References

  • Atamian HS, Chaudhary R, Cin VD, Bao E, Girke T, Kaloshian I (2013) In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol Plant-Microbe Interact 26:67–74

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Ortiz CO, Farriester JW, Pratt CJ, Goldkamp AK, Matts J, Hoback WW, Gustafson JE, Hagen DE (2021) Effect of food source availability in the salivary gland transcriptome of the unique burying beetle Nicrophorus pustulatus (Coleoptera: Silphidae). PLoS ONE 16:e0255660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6:e1001216

    Article  PubMed  PubMed Central  Google Scholar 

  • Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. J Proteome Res 10:1505–1518

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Liu YQ, Song WM, Chen DY, Chen FY, Chen XY, Chen ZW, Ge SX, Wang CZ, Zhan S (2019) An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci USA 116:14331–14338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S (2013) Citrus tristeza virus–host interactions. Front Microbiol 4:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, **g M, Shen D, Wang C, Zhang M, Liang D, Nyawira KT, **a Q, Zuo K, Wu S (2020) The mirid bug Apolygus lucorum deploys a glutathione peroxidase as a candidate effector to enhance plant susceptibility. J Exp Bot 71:2701–2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Huang X, Yang Y, Li J, Zhang M, Shen H, Ren Y, Li X, Tian J, Shen D (2022) Characterization of salivary secreted proteins that induce cell death from Riptortus pedestris (Fabricius) and their roles in insect–plant interactions. Front Plant Sci 13:912603

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Xu HX, Wang F, Qian LX, Liu SS, Wang XW (2022) Armet from whitefly saliva acts as an effector to suppress plant defences by targeting tobacco cystatin. New Phytol 234:1848–1862

    Article  CAS  PubMed  Google Scholar 

  • Huang HJ, Zhang CX, Hong XY (2019) How does saliva function in planthopper–host interactions? Arch Insect Biochem Physiol 100:e21537

    Article  PubMed  Google Scholar 

  • Huang HJ, Ye ZX, Lu G, Zhang CX, Chen JP, Li JM (2021) Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC–MS/MS analyses. Insect Sci 28:1369–1381

    Article  CAS  PubMed  Google Scholar 

  • Ji R, Fu J, Shi Y, Li J, **g M, Wang L, Yang S, Tian T, Wang L, Ju J (2021) Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. New Phytol 232:802–817

    Article  CAS  PubMed  Google Scholar 

  • Jones AC, Felton GW, Tumlinson JH (2022) The dual function of elicitors and effectors from insects: reviewing the ‘arms race’ against plant defenses. Plant Mol Biol 109:427–445

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S, Van West P, Vleeshouwers VG, De Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KT, Jeon J, Choi J, Cheong K, Song H, Choi G, Kang S, Lee YH (2016) Kingdom-wide analysis of fungal small secreted proteins (SSPs) reveals their potential role in host association. Front Plant Sci 7:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang Y, **ong Y, Chen XD, Yu X (2022) Antennae-abundant expression of candidate cytochrome P450 genes associated with odorant degradation in the asian citrus psyllid, Diaphorina citri. Front Physiol 13:1004192

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang Y, Shangguan C, Yuan S, Zhang Q, Qiu Z, Gao L, Yu X (2023) Candidate odorant-binding protein and chemosensory protein genes in the turnip aphid Lipaphis erysimi. Arch Insect Biochem Physiol 113:e22022

    Article  CAS  PubMed  Google Scholar 

  • Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96:7956–7961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

  • Lin CH, Bourque G, Tan P (2008) A comparative synteny map of Burkholderia species links large-scale genome rearrangements to fine-scale nucleotide variation in prokaryotes. Mol Biol Evol 25:549–558

    Article  CAS  PubMed  Google Scholar 

  • Marri PR, Hao W, Golding GB (2006) Gene gain and gene loss in streptococcus: is it driven by habitat? Mol Biol Evol 23:2379–2391

    Article  CAS  PubMed  Google Scholar 

  • Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen M-S, Park Y, Dittmer N, Marshall J, Reese JC (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci USA 105:9965–9969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naessens E, Dubreuil G, Giordanengo P, Baron OL, Minet-Kebdani N, Keller H, Coustau C (2015) A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Curr Biol 25:1898–1903

    Article  CAS  PubMed  Google Scholar 

  • Nicolis VF, Burger NFV, Botha A-M (2022) Whole-body transcriptome mining for candidate effectors from Diuraphis noxia. BMC Genom 23:493

    Article  CAS  Google Scholar 

  • Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR (2018) Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev 93:184–200

    Article  PubMed  Google Scholar 

  • Peng X, Qu M, Wang S, Huang Y, Chen C, Chen M (2021) Chemosensory proteins participate in insecticide susceptibility in Rhopalosiphum padi, a serious pest on wheat crops. Insect Mol Biol 30:138–151

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Su Q, Ren J, Tian L, Zeng Y, Yang Y, Wang S, **e W, Wu Q, Li Z, Zhang Y (2023) A novel salivary effector, BtE3, is essential for whitefly performance on host plants. J Exp Bot 74:2146–2159

    Article  CAS  PubMed  Google Scholar 

  • Prajapati VK, Varma M, Vadassery J (2020) In silico identification of effector proteins from generalist herbivore Spodoptera litura. BMC Genom 21:819

    Article  CAS  Google Scholar 

  • Rajarapu SP, Ben-Mahmoud S, Benoit JB, Ullman DE, Whitfield AE, Rotenberg D (2022) Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. Insect Biochem Mol Biol 149:103843

    Article  CAS  PubMed  Google Scholar 

  • Rao W, Zheng X, Liu B, Guo Q, Guo J, Wu Y, Shangguan X, Wang H, Wu D, Wang Z (2019) Secretome analysis and in planta expression of salivary proteins identify candidate effectors from the brown planthopper Nilaparvata lugens. Mol Plant Microbe Interact 32:227–239

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PA, Escudero-Martinez C, Bos JI (2017) An aphid effector targets trafficking protein VPS52 in a host-specific manner to promote virulence. Plant Physiol 173:1892–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serteyn L, Francis F (2019) Insight into salivary gland proteomes of two polyphagous stink bugs: Nezara viridula L. and Halyomorpha halys Stål. Proteomics 19:1800436

    Article  Google Scholar 

  • Shangguan X, Zhang J, Liu B, Zhao Y, Wang H, Wang Z, Guo J, Rao W, **g S, Guan W (2018) A mucin-like protein of planthopper is required for feeding and induces immunity response in plants. Plant Physiol 176:552–565

    Article  CAS  PubMed  Google Scholar 

  • Shilts T, El-Mohtar C, Dawson WO, Killiny N (2020) Citrus tristeza virus P33 Protein is required for efficient transmission by the aphid Aphis (Toxoptera) citricidus (Kirkaldy). Viruses 12:1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bel AJ, Will T (2016) Functional evaluation of proteins in watery and gel saliva of aphids. Front Plant Sci 7:1840

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Dai H, Zhang Y, Chandrasekar R, Luo L, Hiromasa Y, Sheng C, Peng G, Chen S, Tomich JM (2015) Armet is an effector protein mediating aphid–plant interactions. FASEB J 29:2032–2045

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhang DD, Song J, Li JJ, Wang J, Li R, Klosterman SJ, Kong ZQ, Lin FZ, Dai XF (2022) Verticillium dahliae CFEM proteins manipulate host immunity and differentially contribute to virulence. BMC Biol 20:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Xu HX, Qian LX, Wang XW, Shao RX, Hong Y, Liu SS, Wang XW (2019) A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci USA 116:490–495

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Killiny N (2018) The secreted salivary proteome of Asian citrus psyllid Diaphorina citri. Physiol Entomol 43:324–333

    Article  CAS  Google Scholar 

  • Yu X, Wang G, Huang S, Ma Y, **a L (2014) Engineering plants for aphid resistance: current status and future perspectives. Theor Appl Genet 127:2065–2083

    Article  CAS  PubMed  Google Scholar 

  • Yu XD, Liu ZC, Huang SL, Chen ZQ, Sun YW, Duan PF, Ma YZ, **a LQ (2016) RNAi-mediated plant protection against aphids. Pest Manag Sci 72:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Marshall H, Liu Y, **ong Y, Zeng X, Yu H, Chen W, Zhou G, Zhu B, Ross L, Lu Z (2023) Sex-specific transcription and DNA methylation landscapes of the Asian citrus psyllid, a vector of huanglongbing pathogens. Evolution 77:1203–1215

    Article  PubMed  Google Scholar 

  • Zhang Y, Liu X, Francis F, **e H, Fan J, Wang Q, Liu H, Sun Y, Chen J (2022a) The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defence and is essential for enabling aphid feeding on host plants. Plant Biotechnol J 20:2187–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu X, Fu Y, Crespo-Herrera L, Liu H, Wang Q, Zhang Y, Chen J (2022b) Salivary effector Sm9723 of grain aphid Sitobion miscanthi suppresses plant defense and is essential for aphid survival on wheat. Int J Mol Sci 23:6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Fu Y, Liu X, Francis F, Fan J, Liu H, Wang Q, Sun Y, Zhang Y, Chen J (2023) SmCSP4 from aphid saliva stimulates salicylic acid-mediated defence responses in wheat by interacting with transcription factor TaWKRY76. Plant Biotechnol J 21:2389–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the assistance of **g Zhao, Wenhui Tong, and Sha Ye with the aphid samples.

Funding

This work is funded by the National Natural Science Foundation of China (grant no. 32160634), the Natural Science Foundation for Distinguished Young Scholars of Jiangxi province (grant no. 20212ACB215001), and the Double Thousand Plan of Jiangxi Province (grant no. jxsq2019101058).

Author information

Authors and Affiliations

Authors

Contributions

XY conceived the study; CS and YK reared the insects and conducted the laboratory work; XY, CS, YK, and ZC carried out the analyses; XY wrote the manuscript.

Corresponding author

Correspondence to **udao Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Hongbo Jiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (XLSX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangguan, C., Kuang, Y., Chen, Z. et al. Screening candidate effectors from the salivary gland transcriptomes of brown citrus aphid, Aphis citricidus. Arthropod-Plant Interactions (2024). https://doi.org/10.1007/s11829-024-10071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11829-024-10071-8

Keywords

Navigation