Log in

Efficient plantlet regeneration via somatic embryogenesis and shoot organogenesis in Dichanthium annulatum (Forssk.): a halophyte C4 apomictic forage crop

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Dichanthium annulatum is a popular halophyte C4 perennial forage crop of semi-arid tropics that reproduces apomictically. In vitro plant regeneration in apomictic species helps in producing new germplasm that can supplement existing breeding program. Field-collected seeds and in vitro shoot apices were tested for response to 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP) for initiation of somatic embryogenesis (SE) and direct shoot organogenesis (DSO). Explants produced callus on Murashige and Skoog (MS) medium with varying level of 2,4-D and 0.5 mgL–1 BAP. After 4th sub-culture, yellowish brown turns into white nodular callus tissue with a friable appearance, which exhibited the highest percentage of embryogenic callus induction on MS medium with 3.0 mgL–1 2,4-D and 0.5 mgL–1 BAP, was transferred to MS with BAP or kinetin and 0.125 mgL–1 2,4-D to promote somatic embryo germination into plantlet. The developmental stages of SE were identified using scanning electron microscopy and histology. Multiple shoots were observed with the combinations of BAP or kinetin with 2,4-D. The highest number of shoots (27) occurred on MS medium comprising 4.0 mgL–1 BAP and 0.125 mgL–1 2,4-D. In vitro plantlet was rooted on MS medium with 0.4% charcoal. The rooted 80% plants could be acclimatized and established in soil, as they showed healthy growth and fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data generated in the experiments are presented in the manuscript.

References

  • Abraham J, Thomas TD (2015) Plant regeneration from organogenic callus and assessment of clonal fidelity in Elephantopus scaber Linn. an ethno medicinal herb. Physiol Mol Biol Plants 21:269–277. https://doi.org/10.1007/s12298-015-0281-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad MM, Ragab EA, El-Hela AA (2015) Phytochemical investigation and biological evaluation of Dichanthium annulatum (Forrsk). J Scientific and Innovative Res 4:131–137

    Article  Google Scholar 

  • Bhalla PL, Singh MB (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256. https://doi.org/10.1007/s00299-005-0071-8

    Article  CAS  PubMed  Google Scholar 

  • Bhat V, Mahalakshmi C, Shashi, Saran S, Raina SN (2011) Dichanthium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources–millets and grasses. Berlin, Springer, pp 89–112

    Chapter  Google Scholar 

  • Bradley DE, Bruneau AH, Qu R (2001) Effects of cultivar, explant treatment, and medium supplements on callus induction and plantlet regeneration in perennial ryegrass. Int Turfgrass Soc Res J 9:152–157

    Google Scholar 

  • Bregitzer P, Zhang SB, Cho MJ, Lemaux PG (2002) Reduced somaclonal variation in barley is associated with culturing highly differentiated, meristematic tissues. Crop Sci 42:1303–1308. https://doi.org/10.2135/cropsci2002.1303

    Article  Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep 17:544–551. https://doi.org/10.1007/s002990050439

    Article  CAS  PubMed  Google Scholar 

  • Colomba EL, Grunberg K, Griffa S, Ribotta A, Mroginski L, Biderbost E (2006) The effect of genotype and culture medium on somatic embryogenesis and plant regeneration from mature embryos of fourteen apomictic cultivars of buffel grass (Cenchrus ciliaris L.). Grass Forage Sci 61:2–8. https://doi.org/10.1111/j.1365-2494.2006.00499.x

    Article  Google Scholar 

  • D’Cruz R, Reddy PS (1971) Inheritance of apomixis in Dichanthium annulatum. Indian J Genet Plant Breed 31:451–460

    Google Scholar 

  • Dabadghao PM, Shankarnarayan KA (1973) The grass cover of India. New Delhi, ICAR

    Google Scholar 

  • Dalton SJ, Bettany AJE, Bhat V, Gupta MJ, Bailey K, Timms E, Morris P (2003) Genetic transformation of Dichanthium annulatum (Forssk)—an apomictic tropical forage grass. Plant Cell Rep 21:974–980. https://doi.org/10.1007/s00299-003-0600-2

    Article  CAS  PubMed  Google Scholar 

  • Fatima I, Kanwal S, Mahmood T (2018) Evaluation of biological potential of selected species of family Poaceae from Bahawalpur. Pakistan BMC Compl and Alter Med 18:27. https://doi.org/10.1186/s12906-018-2092-1

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue, Organ Cult 74:201–228. https://doi.org/10.1023/A:1024033216561

    Article  CAS  Google Scholar 

  • Gabbard BL, Fowler NL (2007) Wide ecological amplitude of a diversity reducing invasive grass. Biol Invasions 9:149–160

    Article  Google Scholar 

  • Gonzalez JM, Freiro E, Jouve N (2001) Influence of genotype and culture medium on callus formation and plant regeneration from immature embryos of Triticum turgidum Desf. Cultivars Plant Breed 120:513–517. https://doi.org/10.1046/j.1439-0523.2001.00661.x

    Article  Google Scholar 

  • Gupta MG, Gupta S, Bhat BV, Gupta S (1998) Plant regeneration from callus cultures initiated from nodes of a grass Dichanthium annulatum (Forssk) stapf. Acta Bot Ind 26:31–36

    Google Scholar 

  • Hoagland M, Arnon DI (1950) The water culture metnod to grow plants without soil. California agricultural experiment station circular, Berkeley California

    Google Scholar 

  • Hojsgaard D (2020) Apomixis technology: separating the wheat from the chaff. Genes 11:411. https://doi.org/10.3390/genes11040411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha P, Shashi, Rustagi A, Agnihotri PK, Kulkarni VM, Bhat V (2011) Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tissue, Organ Cult 107:501–512. https://doi.org/10.1007/s11240-011-0001-0

    Article  CAS  Google Scholar 

  • Jha P, Shashi, Kulkarni VM, Bhat V (2016) Thidiazuron-induced multiple shoot regeneration and in vivo flowering in Pennisetum glaucum (L.) R. Br Phytomorphology 66:45–50

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw Hill, New York

    Google Scholar 

  • Kumar R, Kumari B (2019) Common grasses of Bijnor district used by bhoxa tribals in their primary health care system. J Medicinal Plants Studies 7:05–07

    CAS  Google Scholar 

  • Kumar J, Shukla SM, Bhat V, Gupta S, Gupta MG (2005) In vitro plant regeneration and genetic transformation of Dichanthium annulatum. DNA Cell Biol 24:670–679. https://doi.org/10.1089/dna.2005.24.670

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar A, Kumar P, Lata C, Kumar S (2018) Effect of individual and interactive alkalinity and salinity on physiological, biochemical and nutritional traits of Marvel grass. Indian J Exp Biol 56:573–581

    CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Zang ZX, Yuan JG, ** ZB, Du XL, Yang ZY (2006) Callus induction and plant regeneration in eleven perennial ryegrass cultivars. Biotechnol Biotechnol Equip 20:30–37

    Article  Google Scholar 

  • Mann A, Kumar N, Lata C, Kumar A, Kumar A, Meena BL (2019) Functional annotation of differentially expressed genes under salt stress in Dichanthium annulatum. Plant Physiol Rep 24:104–111. https://doi.org/10.1007/s40502-019-0434-8

    Article  CAS  Google Scholar 

  • Mehra KL, Magoon ML (1974) Collection, conservation and exchange of gene pools of forage grasses. Indian J Genet 34:26

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nisar MF, Jaleel F, Waseem M, Ismail MS, Toor Y, Haider SM, Zhong JL (2014) Ethno-medicinal uses of plants from district Bahawalpur, Pakistan. Cur Res J Biol Sci 6:183–190. https://doi.org/10.19026/crjbs.6.5191

    Article  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praveena M, Giri CC (2012) Plant regeneration from immature inflorescence derived callus cultures of salt tolerant kallar grass (Leptochloa fusca L.). Physiol Mol Biol Plants 18:345–356. https://doi.org/10.1007/s12298-012-0134-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajyalakshmi K, Grover A, Maheshwari N, Tyagi AK, Maheshwari SC (1991) High frequency regeneration of plantlets from the leaf bases via somatic embryogenesis and comparison of polypeptide profiles from morphogenic and non-morphogenic calli in wheat (Triticum aestivum). Physiol Plant 82:617–623. https://doi.org/10.1111/j.1399-3054.1991.tb02955.x

    Article  CAS  Google Scholar 

  • Scowcroft WR, Larkin PJ (1988) Somaclonal variation. In: Bock G, Marsh J (eds.) Applications of plant cell and tissue culture, Ciba foundation symposium, 137, Wiley, England

  • Shashi, Bhat V (2021) Enhanced somatic embryogenesis and plantlet regeneration in Cenchrus ciliaris L. In Vitro Cell Dev Biol- Plant 57:499–509. https://doi.org/10.1007/s11627-020-10148-y

    Article  CAS  Google Scholar 

  • Shashi, Bhat V (2022) Plant regeneration via somatic embryogenesis and direct shoot organogenesis of a C4 bioenergy crop Pennisetum pedicellatum Trin. S Afr J Bot 146:286–292. https://doi.org/10.1016/j.sajb.2021.10.020

    Article  CAS  Google Scholar 

  • Singh P, Singh PK, Sahu S, Singh A, Gaurav N, Singh N (2017) Ecological study of grasses in Mukundpur range of Satna forest division Madhya Pradesh with the assessment of threat and conservation status. J Medicinal Plants Studies 5:07–12

    Google Scholar 

  • Sivadas P, Chandra N, Kothari SL (1992) Histology of somatic embryogenesis and shoot bud formation in tissue cultures of the finger millet (Eleusine coracana (L.) Gaertn.). Phytomorphology 42:203–207

    Google Scholar 

  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, Morrne O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol 53:117–137

    Article  Google Scholar 

  • Srivatanakul M, Park S, Sanders J, Salas M, Smith R (2000) Multiple shoot regeneration of kenaf (Hibicus cannabinus L.) from a shoot apex culture system. Plant Cell Rep 19:1165–1170. https://doi.org/10.1007/s002990000256

    Article  CAS  PubMed  Google Scholar 

  • Van der Valk P, Ruis F, Tettelaar-Schrier AM, Van De Velde CM (1995) Optimizing plant regeneration from seed-derived callus culture of Kentucky bluegrass. The effect of benzyladenine. Plant Cell Tissue Organ Cult 40:101–103. https://doi.org/10.1007/BF00041125

    Article  Google Scholar 

  • Vasil V, Vasil IK (1982) The ontogeny of somatic embryos of Pennisetum americanum (L.) K. Schum. in cultured immature embryos. Botl Gaz 143:454–456

    Article  Google Scholar 

  • Vielle-Calzada JP, Crane CF, Stelly DM (1996) Apomixis: the asexual revolution. Science 274:1322–1323

    Article  Google Scholar 

  • Wied JP, Perotto-Baldivieso HL, Conkey AAT, Brennan LA, Mata JM (2020) Invasive grasses in South Texas rangelands: historical perspectives and future directions. Invasive Plant Sci Manag 13:41–58

    Article  Google Scholar 

  • Yadav CB, Jha P, Mahalakshmi C, Anjaiah V, Bhat V (2009) Somatic embryogenesis and regeneration of Cenchrus ciliaris genotypes from immature inflorescence explants. Biol Plant 53:603–609. https://doi.org/10.1007/s10535-009-0111-2

    Article  CAS  Google Scholar 

  • Yookongkaew N, Srivatanakul M, Narangajavana J (2007) Development of genotype independent regeneration system for transformation of rice (Oryza sativa ssp. indica). J Plant Res 120:237–245. https://doi.org/10.1007/s10265-006-0046-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhong H, Sticklen MB (1996) Production of multiple shoots from shoot apical meristems of Oat (Avena sativa L.). J Plant Physiol 148:667–671. https://doi.org/10.1016/S0176-1617(96)80365-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge IGFRI, Jhansi for providing the seed material used in this study. A part of research work was financially supported by R and D Grant from the University of Delhi, Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Bhat.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashi, Maity, P.J. & Bhat, V. Efficient plantlet regeneration via somatic embryogenesis and shoot organogenesis in Dichanthium annulatum (Forssk.): a halophyte C4 apomictic forage crop. Plant Biotechnol Rep 17, 615–624 (2023). https://doi.org/10.1007/s11816-023-00864-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-023-00864-3

Keywords

Navigation