Log in

Cloning and characterization of a gene encoding ABP57, a soluble auxin-binding protein

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Auxin-binding protein 57 (ABP57), a soluble auxin-binding protein, acts as a receptor to activate plasma membrane (PM) H+-ATPase. Here, we report the cloning of abp57 and the biochemical characterization of its protein expressed in E. coli. The analysis of internal amino acid sequences of ABP57 purified from rice shoots enabled us to search for the corresponding gene in protein DB of NCBI. Further BLAST analysis showed that rice has four abp57-like genes and maize has at least one homolog. Interestingly, Arabidopsis seems to have no homolog. Recombinant ABP57 expressed in E. coli caused the activation of PM H+-ATPase regardless of the existence of IAA. Scatchard analysis showed that the recombinant protein has relatively low affinity to IAA as compared to natural ABP57. These results collectively support the notion that the cloned gene is responsible for ABP57.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badescu GO, Napier RM (2006) Receptors for auxin: will it all end in TIRs? Trends Plant Sci 11:217–223

    Article  CAS  PubMed  Google Scholar 

  • Barbier-Brygoo H, Ephritikhine G, Klambt D, Ghislain M, Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86:891–895

    Article  CAS  PubMed  Google Scholar 

  • Birnbaumer L, Pohl SL, Kaumann AJ (1974) Receptors and acceptors: a necessary distinction in hormone binding studies. In: Greengard P, Robison GG (eds) Advances in cyclic nucleotide research. North-Holland, New York, pp 239–281

    Google Scholar 

  • Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911

    Article  CAS  PubMed  Google Scholar 

  • David KM, Couch D, Braun N, Brown S, Grosclaude J, Perrot-Rechenmann C (2007) The auxin-binding protein 1 is essential for the control of cell cycle. Plant J 50:197–206

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hertel R, Thomson KS, Russo VEA (1972) In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107:325–340

    Article  CAS  Google Scholar 

  • Inohara N, Shimomura S, Fukui T, Futai M (1989) Auxin-binding protein located in the endoplasmic reticulum of maize shoots: molecular cloning and complete primary structure. Proc Natl Acad Sci USA 86:3564–3568

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117

    Article  CAS  PubMed  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim YS, Jung J (1997) Involvement of soluble proteinous factors in auxin-induced modulation of P-type ATPase in rice (Oryza sativa L.) seedlings. FEBS Lett 409:273–276

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim DH, Jung J (1998) Isolation of a novel auxin receptor from soluble fractions of rice (Oryza sativa L.) shoots. FEBS Lett 438:241–244

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim D, Jung J (2000) Two isoforms of soluble auxin receptor in rice (Oryza sativa L.) plants: binding property for auxin and interaction with plasma membrane H+-ATPase. Plant Growth Regul 32:143–150

    Article  CAS  Google Scholar 

  • Kim YS, Min JK, Kim D, Jung J (2001) A soluble auxin-binding protein, ABP57-purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in the auxin effect on plant plasma membrane H+-ATPase. J Biol Chem 276:10730–10736

    Article  CAS  PubMed  Google Scholar 

  • Larsson C, Widell S, Kjellbom P, Lester P, Roland D (1987) Preparation of high-purity plasma membranes. Methods Enzymol 148:558–568

    Article  CAS  Google Scholar 

  • Lobler M, Klambt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem 260:9848–9853

    CAS  PubMed  Google Scholar 

  • Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG (1990) An H+-ATPase assay: proton pum** and ATPase activity determined simultaneously in the same sample. Plant Physiol 94:882–886

    Article  CAS  PubMed  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tillmann U, Viola G, Kayser B, Siemeister G, Hesse T, Palme K, Lobler M, Klambt D (1989) cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.)—isolation and characterization by immunological methods. EMBO J 8:2463–2467

    CAS  PubMed  Google Scholar 

  • Timpte C (2001) Auxin binding protein: curiouser and curiouser. Trends Plant Sci 6:586–590

    Article  CAS  PubMed  Google Scholar 

  • Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW (2002) Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J 21:2877–2885

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) A receptor for auxin. Plant Cell 17:2425–2429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Academy of Agricultural Science (200901FHT020711430) and the Biogreen 21 Program (2005030103441901) of the Rural Development Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghern Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Kim, MI., Kwon, YJ. et al. Cloning and characterization of a gene encoding ABP57, a soluble auxin-binding protein. Plant Biotechnol Rep 3, 293–299 (2009). https://doi.org/10.1007/s11816-009-0101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-009-0101-z

Keywords

Navigation