Log in

Integrated Melamine Molecules on Microspherical Boehmite Particles via Spray Drying for Highly Efficient CO2/N2 Adsorption Separation

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A newly developed spherical boehmite and melamine composite with a mesoporous structure was successfully fabricated through a spray drying system utilizing a mixture of boehmite sol and melamine. EDX–SEM, FTIR, and TGA analyses confirmed the integration of melamine into the boehmite network within the resulting composite. With an increase in melamine content, the composites exhibited a gradual reduction in porosity compared to their pristine boehmite counterpart. However, the CO2 uptake of the composites continued to demonstrate improvement. The boehmite sample modified with 5 mol% of melamine (IMB#5) demonstrated the highest CO2 adsorption capacity at 19.2 cm3 g−1. This value surpassed the original boehmite sample by 46.1% under conditions of 25 °C and 1 bar. The enhanced adsorption can be attributed to the development of adsorptive affinity facilitated by N-derived functional groups (–NH2 and  –CN) within the melamine structure and their interaction with CO2. As a result, the CO2/N2 separation factor and CO2/N2 adsorptive selectivity using the ideal adsorbed solution theory (IAST) over the IMB#5 sample were 113.3 and 3182, respectively, approximately 3 times and 9.2 times higher than those for the boehmite sample. Density functional theory (DFT) calculations were conducted to investigate the interaction of melamine on the boehmite surface, as well as the selective adsorption of CO2 and N2 gaseous molecules on the boehmite/melamine composite. It is shown that the melamine mainly interacts with the boehmite via a strong binding of the N atom of the triazine ring with the Al atom of the boehmite. The adsorption of CO2 has lower binding enthalpies and free energies than that of N2. These findings indicate that utilizing continuous spray drying holds promise as an effective pathway for scaling up the production of mesoporous boehmite/melamine composite spheres as CO2 selective adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data is shown in both the manuscript and supporting information files.

References

  1. M. Abdollahifar, M. Hidaryan, P. Jafari, Bol. Soc. Esp. Ceram. V 57, 66 (2018)

    Article  CAS  Google Scholar 

  2. H.R. Abid, Z.H. Rada, X. Duan, H. Sun, S. Wang, Energy Fuels 32, 4502 (2018)

    Article  CAS  Google Scholar 

  3. T. Arumugham, N.J. Kaleekkal, D. Rana, K.I. Sathiyanarayanan, RSC Adv. 9, 41462 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. Avci-Camur, J. Troyano, J. Pérez-Carvajal, A. Legrand, D. Farrusseng, I. Imaz, D. Maspoch, Green Chem. 20, 873 (2018)

    Article  CAS  Google Scholar 

  5. K. Bahrami, M.M. Khodaei, M. Roostaei, New J. Chem. 38, 5515 (2014)

    Article  CAS  Google Scholar 

  6. F. Banisheykholeslami, M. Hosseini, G.N. Darzi, M.R.S. Kebria, Korean J. Chem. Eng. 40, 841 (2023)

    Article  CAS  Google Scholar 

  7. C. Bao, Y. Jiang, L. Zhao, D. Li, P. Xu, J. Sun, New J. Chem. 45, 13893 (2021)

    Article  CAS  Google Scholar 

  8. J.M.A. Caiut, J. Dexpert-Ghys, Y. Kihn, M. Vérelst, H. Dexpert, S.J.L. Ribeiro, Y. Messaddeq, Powder Technol. 190, 95 (2009)

    Article  CAS  Google Scholar 

  9. S. Carstens, D. Enke, J. Eur. Ceram. Soc. 39, 2493 (2019)

    Article  CAS  Google Scholar 

  10. C. Chen, J. Kim, W.-S. Ahn, Korean J. Chem. Eng. 31, 1919 (2014)

    Article  CAS  Google Scholar 

  11. K. Cho, J. Kim, H.T. Beum, T. Jung, S.S. Han, J. Hazard. Mater. 344, 857 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. K. Cho, J. Kim, J.-H. Park, T. Jung, H.T. Beum, D.-W. Cho, Y.W. Rhee, S.S. Han, Microporous Mesoporous Mater. 277, 142 (2019)

    Article  CAS  Google Scholar 

  13. J. Choi, J. Kim, K.S. Yoo, T.G. Lee, Powder Technol. 181, 83 (2008)

    Article  CAS  Google Scholar 

  14. S.P. Dubey, A.D. Dwivedi, M. Sillanpää, H. Lee, Y.-N. Kwon, C. Lee, Chemosphere 169, 99 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, "Gaussian 16 rev. C.01", Wallingford, CT (2016)

  16. A. Ghorbani-Choghamarani, B. Tahmasbi, F. Arghand, S. Faryadi, RSC Adv. 5, 92174 (2015)

    Article  CAS  Google Scholar 

  17. C. Goel, H. Bhunia, P.K. Bajpai, J. Environ. Sci. 32, 238 (2015)

    Article  CAS  Google Scholar 

  18. H. Hamyali, F. Nosratinia, A. Rashidi, M. Ardjmand, J. Environ. Chem. Eng. 10, 107007 (2022)

    Article  CAS  Google Scholar 

  19. Z. Huang, L. Ying, F. Gong, J. Lu, W. Wang, J. Ding, J. Yan, J. Environ. Chem. Eng. 11, 109739 (2023)

    Article  CAS  Google Scholar 

  20. H. Hur, R.J. Reeder, J. Environ. Sci. 65, 103 (2018)

    Article  CAS  Google Scholar 

  21. S. Jawaid, F.N. Talpur, H.I. Afridi, S.M. Nizamani, A.A. Khaskheli, S. Naz, Anal. Methods 6, 5269 (2014)

    Article  CAS  Google Scholar 

  22. J. Karger-Kocsis, L. Lendvai, J. Appl. Polym. Sci. 135, 45573 (2018)

    Article  Google Scholar 

  23. S. Khalili, M. Jahanshahi, Korean J. Chem. Eng. 38, 862 (2021)

    Article  CAS  Google Scholar 

  24. M.A. Khan, S.-W. Kim, R.A.K. Rao, R.A.I. Abou-Shanab, A. Bhatnagar, H. Song, B.-H. Jeon, J. Hazard. Mater. 178, 963 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. A.-R. Kim, T.-U. Yoon, S.-I. Kim, K. Cho, S.-S. Han, Y.-S. Bae, Chem. Eng. J. 348, 135 (2018)

    Article  CAS  Google Scholar 

  26. V.N. Le, T.K. Vo, K.S. Yoo, J. Kim, Sep. Purif. Technol. 274, 119079 (2021)

    Article  CAS  Google Scholar 

  27. J. Li, A. Bao, J. Chen, Y. Bao, J. Environ. Chem. Eng. 10, 107021 (2022)

    Article  CAS  Google Scholar 

  28. P. Li, S. Zheng, P. Qing, Y. Chen, L. Tian, X. Zheng, Y. Zhang, Green Chem. 16, 4214 (2014)

    Article  CAS  Google Scholar 

  29. Y. Li, Y. Wang, B. Chen, L. Wang, J. Yang, B. Wang, J. Environ. Chem. Eng. 10, 108847 (2022)

    Article  CAS  Google Scholar 

  30. W. Liang, Z. Liu, J. Peng, X. Zhou, X. Wang, Z. Li, Energy Fuels 33, 493 (2019)

    Article  CAS  Google Scholar 

  31. G. Lim, K.B. Lee, H.C. Ham, J. Phys. Chem. C 120, 8087 (2016)

    Article  CAS  Google Scholar 

  32. Y. Liu, S. Li, Y. Chen, M. Li, Z. Chen, T. Hu, L. Shi, M. Pudukudy, S. Shan, Y. Zhi, Chem. Eng. J. 474, 145918 (2023)

    Article  CAS  Google Scholar 

  33. L. Luo, W. Cai, J. Zhou, Y. Li, J. Hazard. Mater. 318, 452 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. L. Mei, T. Jiang, X. Zhou, Y. Li, H. Wang, Z. Li, Chem. Eng. J. 321, 600 (2017)

    Article  CAS  Google Scholar 

  35. A.L. Myers, J.M. Prausnitz, AlChE J. 11, 121 (1965)

    Article  CAS  Google Scholar 

  36. J.H. Park, M.W. Hong, H.C. Yoon, K.B. Yi, Korean J. Chem. Eng. 39, 2775 (2022)

    Article  CAS  Google Scholar 

  37. M. Rajamani, S.M. Maliyekkal, Carbohydr. Polym. 194, 245 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. C. Shang, Z. Wu, W. Duo Wu, X. Dong Chen, Chem. Eng. Sci. 229, 116080 (2021)

    Article  CAS  Google Scholar 

  39. K.A. Shuhailath, V. Linsha, S.N. Kumar, K.B. Babitha, A.A. Mohamed, S. Peer Ananthakumar, RSC Adv. 10, 44773 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K.A. Shuhailath, V. Linsha, S.N. Kumar, K.B. Babitha, A.A. Mohamed, S. Peer Ananthakumar, RSC Adv. 6, 54357 (2016)

    Article  CAS  Google Scholar 

  41. R. Snoeckx, A. Bogaerts, Chem. Soc. Rev. 46, 5805 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. T.K. Vo, V.N. Le, V.C. Nguyen, M. Song, D. Kim, K.S. Yoo, B.J. Park, J. Kim, J. Ind. Eng. Chem. 86, 178 (2020)

    Article  CAS  Google Scholar 

  43. K.S. Walton, D.S. Sholl, AlChE J. 61, 2757 (2015)

    Article  CAS  Google Scholar 

  44. Y. Wei, M. Chang, J. Liu, N. Wang, J.-X. Wang, Nanoscale 14, 2793 (2022)

    Article  CAS  PubMed  Google Scholar 

  45. Z. Yang, Y.S. Lin, Ind. Eng. Chem. Res. 39, 4944 (2000)

    Article  CAS  Google Scholar 

  46. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008)

    Article  CAS  Google Scholar 

  47. Z. Zhou, L. Mei, C. Ma, F. Xu, J. **ao, Q. **a, Z. Li, Chem. Eng. Sci. 147, 109 (2016)

    Article  CAS  Google Scholar 

  48. H. Zhu, S.-A. Xu, RSC Adv. 8, 17879 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. W. Zhu, Y. Wang, F. Yao, X. Wang, H. Zheng, G. Ye, H. Cheng, J. Wu, H. Huang, D. Ye, J. Environ. Sci. 139, 93 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2019R1A6C1010052) and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (No. 2020R1A6A1A03048004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Van Nhieu Le or **soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 382 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, V.N., Dao, D.Q., Truong, H.B. et al. Integrated Melamine Molecules on Microspherical Boehmite Particles via Spray Drying for Highly Efficient CO2/N2 Adsorption Separation. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00194-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00194-2

Keywords

Navigation