Log in

Investigating the Pyrolysis Properties of Cellulose and Lignin Isolated from Different Turkish Biomass Using TG-FTIR

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, the devolatilization behavior of eastern Mediterranean hazelnut, almond, and sunflower residue was studied using a TGA–FTIR laboratory-scale setup. The original biomasses were fractionated using the Van Soest detergent analysis. Both the original and fractionated biomasses were investigated. The reaction temperature was increased to 900 °C using a heating rate of 2 °Cmin−1. The pyrolysis of lignin produced the largest gas production, with CO2 constituting up the bulk of the gas mixture. CO is the second highest-yield gas and is primarily formed from the samples of cellulose and lignin. For the lignin samples, the pyrolysis operation yielded the maximum amount of char, while the combustion of the lignin chars produced the highest amount of gas yields. On the other hand, lignin samples, particularly almond lignin, have the lowest tar production. Due to the high ash content the sunflower stalk sample devolatilized at a lower temperature with respect to the rest of the samples, resulting at a mass loss peak at lower temperature. The hazelnut lignin showed the mass loss peak at the highest temperature. Generally, CO2 showed the highest mass yield, and it was mainly produced from the cellulose and whole biomass samples. Among all samples CH4 was produced in minor quantities and mostly in lignin devolatilization. Furthermore, the devolatilization behavior of the fractionated biopolymers is not enough to sufficiently predict the behavior of the whole biomass sample. The results described in this paper can help further the understanding of thermal processes where almond, hazelnut, and sunflower residues from the eastern Mediterranean region, and their fractionated-derived products are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O.O. Olantunji, M.P. Akinlabi, M.P. Mashinini, S.O. Fatoba, O.O. Ajayi, Thermo-gravimetric characterization of biomass properties: a review. IOP Conf. Ser. Mater. Sci. Eng. 423, 012175 (2018)

    Article  Google Scholar 

  2. C. Keattch, Studies in the history and development of thermogravimetry. J. Therm. Anal. 44, 1211–1218 (1995)

    Article  CAS  Google Scholar 

  3. J. Cai, D. Xu, Z. Dong, X. Yu, Y. Yang, S.W. Banks, A.V. Bridgwater, Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew. Sustain. Energy Rev. 82, 2705–2715 (2018)

    Article  CAS  Google Scholar 

  4. S. Wang, G. Dai, H. Yang, Z. Luo, Lignocellulosic biomass pyrolysis mechanism: a state of the art review. Prog. Energy Combust. Sci. 62, 33–86 (2017)

    Article  Google Scholar 

  5. H. Zhou, Y. Long, A. Meng, S. Chen, Q. Li, Y. Zhang, A novel method for kinetic analysis of pyrolysis of hemicellulose, cellulose and lignin in TGA and macro-TGA. RCS Adv. 5, 26509 (2015)

    CAS  Google Scholar 

  6. V. Volli, R. Varma, D. Pradhan, A.K. Panda, C.M. Shu, Thermal degradation behaviour, kinetics, and thermodynamics of Bombax Malabarica seeds through TG–FTIR and Py-GC/MS analysis. Sustain. Energy Technol. Assess. 57, 103150 (2023)

    Google Scholar 

  7. P. Zong, Y. Jiang, Y. Tian, J. Li, M. Yuan, Y. Ji, M. Chen, D. Li, Y. Qiao, Pyrolysis behavior and product distributions of biomass six group components: starch, cellulose, hemicellulose, lignin, protein and oil. Energy Convers. Manage. 216, 11277 (2020)

    Article  Google Scholar 

  8. X. Ming, F. Xu, Y. Jiang, P. Zong, B. Wang, J. Li, Y. Qiao, Y. Tian, Thermal degradation of food waste by TG–FTIR and Py-GC/MS: pyrolysis behaviors, products, kinetic and thermodynamic analysis. J Cleaner Prod. 244, 118713 (2020)

    Article  CAS  Google Scholar 

  9. Q.V. Bach, W.-H. Chen, A comprehensive study on pyrolysis kinetics of microalgal biomass. Energy Convers. Manage. 131, 109–116 (2017)

    Article  CAS  Google Scholar 

  10. N. Liu, J. Li, J. Liu, K. Xu, F. Ren, X. Yao, Study on pyrolysis behavior of agricultural and forestry wastes using thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR). AsiaPacific J. Chem. Eng. (2023). https://doi.org/10.1002/apj.3020

    Article  Google Scholar 

  11. L. Zhang, Z. Yang, S. Li, X. Wang, R. Lin, Comparative study on the two-step pyrolysis of different lignocellulosic biomass: Effects of components. J. Anal. Appl. Pyrol. 152, 104966 (2020)

    Article  CAS  Google Scholar 

  12. F. Xu, X. Zhang, F. Zhang, L. Jiang, Z. Zhao, H. Li, TG–FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures. Fuel 268, 117365 (2020)

    Article  CAS  Google Scholar 

  13. M. Zhang, F.L.P. Resende, A. Moutsoglou, D.E. Raynie, Pyrolysis of Lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J. Anal. Pyrol. 98, 65–71 (2012)

    Article  CAS  Google Scholar 

  14. C.G. Yoo, Pretreatment and fractionation of lignocellulosic biomass for production of biofuel and value-added products. PhD thesis, Iowa State University (2012)

  15. X. Zhao, K. Cheng, D. Liu, Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82, 815–827 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. M. Brebu, G. Cazacu, O. Chirila, Pyrolysis of lignin-a potential method for obtaining chemicals and /or fuels. Cellul. Chem. Technol. 45, 43–50 (2011)

    CAS  Google Scholar 

  17. S. Wang, Q. Liu, Z. Luo, L. Wen, K. Cen, Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy. Front. Energy Power Eng. China 1, 413–419 (2007)

    Article  Google Scholar 

  18. J.H. Lora, W.G. Glasser, Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10, 39–48 (2002)

    Article  CAS  Google Scholar 

  19. R.J.A. Gosselink, E. de Jong, B. Guran, A. Abaecherli, Co-ordination network for lignin-standardization, production and applications adapted to market requirements (EUROLIGNIN). Ind. Crops Prod. 20, 121–129 (2004)

    Article  CAS  Google Scholar 

  20. H.V. Scheller, P. Ulvskov, Hemicelluloses. Ann. Rev. Plant Biol. 61, 263–289 (2010)

    Article  CAS  Google Scholar 

  21. P.J. Van Soest, J.B. Robertson, B.A. Lewis, Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)

    Article  PubMed  Google Scholar 

  22. L. Ballice, M. Sert, M. Sağlam, M. Yüksel, Determination of pyrolysis kinetics of cellulose and lignin fractions from selected Turkish Biomasses. Arabian J. Sci. Eng. 45, 7429–7444 (2020)

    Article  CAS  Google Scholar 

  23. N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon, Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrol. 78, 265–271 (2007)

    Article  CAS  Google Scholar 

  24. Q. Liu, S. Wang, Y. Zheng, Z. Luo, K. Cen, Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J. Anal. Appl. Pyrol. 82, 170–177 (2008)

    Article  CAS  Google Scholar 

  25. S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen, T. Fransson, Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 27, 562–567 (2008). (Bioenergy Research & Development in China ICBT)

    Article  CAS  Google Scholar 

  26. B. Li, W. Lv, Q. Zhang, T. Wang, L. Ma, Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: kinetics and products. J. Anal. Appl. Pyrol. 108, 295–300 (2014)

    Article  CAS  Google Scholar 

  27. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Article  CAS  Google Scholar 

  28. G. Varhegyi, M.J. Antal, T. Szekely, F. Till, E. Jakab, Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 1. Avicel cellulose in the presence and absence of catalysts. Energy Fuels 2, 267–327 (1988)

    Article  CAS  Google Scholar 

  29. J.G. Reynolds, A.K. Burnham, Pyrolysis decomposition kinetics of cellulose-based materials by constant heating rate micropyrolysis. Energy Fuels 11, 88–97 (1997)

    Article  CAS  Google Scholar 

  30. A. Jensen, K. Dam-Johansen, M.A. Wójtowicz, M.A. Serio, TG–FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy Fuels 12, 929–938 (1998)

    Article  CAS  Google Scholar 

  31. B. Joffres, D. Laurenti, N. Charon, A. Daudin, A. Quignard, C. Geantet, Thermochemical conversion of lignin for fuels and chemicals: a review. Oil Gas Sci. Technol. Rev. D’IFP Energ. Nouv. 68, 753–763 (2013)

    Article  CAS  Google Scholar 

  32. O. Faix, E. Jakab, F. Till, T. Szekely, Study on low mass thermal degradation products of milled wood lignins by thermogravimetry–mass-spectrometry. Wood Sci. Technol. 22, 323–334 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support of The Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project No: 106T748) and thank the Council of Higher Education (Turkey) for the scholarship. The authors appreciate the Karlsruhe Institute of Technology for analyzing the elemental composition of the biomass samples. The authors also appreciate the TU Delft/Faculty of 3 mE, Department of Process and Energy for the TGA–FTIR analysis of the biomass samples. Finally, the authors would like to thank Prof. Dr. M. Yüksel, Prof. Dr. M. Sağlam, and Mr. G. Serin for their support in the isolation steps of the biomass samples.

Funding

The Scientific and Technological Research Council of Turkey, Council of Higher Education (Turkey), Karlsruhe Institute of Technology, TU Delft/Faculty of 3 mE, Department of Process and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Ballice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballice, L. Investigating the Pyrolysis Properties of Cellulose and Lignin Isolated from Different Turkish Biomass Using TG-FTIR. Korean J. Chem. Eng. 41, 2367–2376 (2024). https://doi.org/10.1007/s11814-024-00189-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00189-z

Keywords

Navigation