Log in

Exploring the Effect of Different Anions and Cations on the Solubility of CO2 in Nitrile Imidazolium-Based Ionic Liquids with Sulfonated-Based Anions

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of different cations and anions on the CO2 solubility in ionic liquids was investigated using a systematic approach in the current work. Four ionic liquids (ILs) containing the same cation ([C2CN Bim]) were synthesized, each incorporating a different anion (DDS, BS TFMS, and DOSS). In addition, four ILs with different cations ([C2CN Bim], [C2CN Him], [C2CN Oim], and [C2CN Dim]) were prepared, all containing the same anion (DOSS). Then, these ILs were characterized and utilized to determine how various cations and anions influence CO2 solubility. The prepared ILs were characterized using NMR and elemental analysis. Impurities, such as moisture and halide content were also determined. The CO2 solubility was studied using the gravimetric method (MSB) at pressures of 1, 5, 10, 15, and 20 bar. An investigation was also conducted to examine the influence of temperature on the solubility of CO2 in [C2CN Dim] [DOSS]. Henry’s law constants were calculated along with the thermodynamic properties such as standard enthalpy, entropy, and Gibbs free energy (ΔH0, ΔS0, ΔG0). In addition, the CO2/CH4 solubility selectivity was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Available upon requesting the first author. taha_a@rcjy.edu.sa.

References

  1. E. Torralba-Calleja, J. Skinner, D. Gutiérrez-Tauste, CO2 capture in ionic liquids: A review of solubilities and experimental methods. J. Chem. 2013, 1–16 (2013)

    Article  Google Scholar 

  2. J.D. Holbrey, K. Seddon, Ionic liquids. Clean Prod. Process. 1, 223–236 (1999)

    Google Scholar 

  3. K.R. Seddon, A taste of the future. Nat. Mater. 2, 363–365 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. A. Jiménez, M. Bermúdez, F. Carrion, G. Martinez-Nicolas, Room temperature ionic liquids as lubricant additives in steel–aluminium contacts: influence of sliding velocity, normal load and temperature. Wear 261, 347–359 (2006)

    Article  Google Scholar 

  5. M.J. Earle, K.R. Seddon, Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)

    Article  CAS  Google Scholar 

  6. K. E. Gutowski, "Industrial uses and applications of ionic liquids," Physical Sciences Reviews, vol. 3, 2018.

  7. M. Kosmulski, J. Gustafsson, J.B. Rosenholm, Thermal stability of low temperature ionic liquids revisited. Thermochim. Acta 412, 47–53 (2004)

    Article  CAS  Google Scholar 

  8. M. Pan, Y. Zhao, X. Zeng, J. Zou, Efficient absorption of CO2 by introduction of intramolecular hydrogen bonding in chiral amino acid ionic liquids. Energy Fuels 32, 6130–6135 (2018)

    Article  CAS  Google Scholar 

  9. M. Ramdin, T.W. de Loos, T.J. Vlugt, State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 51, 8149–8177 (2012)

    Article  CAS  Google Scholar 

  10. H.S. Schrekker, M.P. Stracke, C.M.L. Schrekker, J. Dupont, Ether-functionalized imidazolium hexafluorophosphate ionic liquids for improved water miscibilities. Ind. Eng. Chem. Res. 46, 7389–7392 (2007)

    Article  CAS  Google Scholar 

  11. F. Ding, X. He, X. Luo, W. Lin, K. Chen, H. Li, C. Wang, Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid–base and cooperative C-H...O hydrogen bonding interaction strengthened by the anion. Chem. Commun. 50, 15041–15044 (2014)

    Article  CAS  Google Scholar 

  12. Y.S. Sistla, V. Sridhar, Molecular understanding of carbon dioxide interactions with ionic liquids. J. Mol. Liq. 325, 115162 (2021)

    Article  CAS  Google Scholar 

  13. F. Karadas, M. Atilhan, S. Aparicio, Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 24, 5817–5828 (2010)

    Article  CAS  Google Scholar 

  14. J. Bara, C. Gabriel, T. Carlisle, D. Camper, A. Finotello, D. Gin, R. Noble, Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J. 147, 43–50 (2009)

    Article  CAS  Google Scholar 

  15. X. Zhang, Z. Liu, W. Wang, Screening of ionic liquids to capture CO2 by COSMO RS and experiments. AIChE J. 54, 2717–2728 (2008)

    Article  CAS  Google Scholar 

  16. D. Zhao, Z. Fei, R. Scopelliti, P.J. Dyson, Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg. Chem. 43, 2197–2205 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Q. Zhang, Z. Li, J. Zhang, S. Zhang, L. Zhu, J. Yang, X. Zhang, Y. Deng, Physicochemical properties of nitrile-functionalized ionic liquids. J. Phys. Chem. B 111, 2864–2872 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. A.K. Ziyada, C.D. Wilfred, M.A. Bustam, Z. Man, T. Murugesan, Thermophysical properties of 1-propyronitrile-3-alkylimidazolium bromide ionic liquids at temperatures from (293.15 to 353.15) K. J. Chem. Eng. Data 55, 3886–3890 (2010)

    Article  CAS  Google Scholar 

  19. A.K. Ziyada, M.A. Bustam, T. Murugesan, C.D. Wilfred, Effect of sulfonate-based anions on the physicochemical properties of 1-alkyl-3-propanenitrile imidazolium ionic liquids. New J. Chem. 35, 1111–1116 (2011)

    Article  CAS  Google Scholar 

  20. A.K. Ziyada, M.A. Bustam, C.D. Wilfred, T. Murugesan, Densities, viscosities, and refractive indices of 1-hexyl-3-propanenitrile imidazolium ionic liquids incorporated with sulfonate-based anions. J. Chem. Eng. Data 56, 2343–2348 (2011)

    Article  CAS  Google Scholar 

  21. M.W. Arshad, “CO2 capture using Ionic Liquids.’ Master’s thesis, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark (2009)

  22. A.K. Ziyada, C.D. Wilfred, Effect of cation modification on the physicochemical properties and CO2 solubility: nonfluorinated phosphonium-based ionic liquids incorporating a dioctylsulfosuccinate anion. J. Chem. Eng. Data 63, 3672–3683 (2018)

    Article  CAS  Google Scholar 

  23. M.S.R. Shahrom, C.D. Wilfred, A.K.Z. Taha, CO2 capture by task specific ionic liquids (TSILs) and polymerized ionic liquids (PILs and AAPILs). J. Mol. Liq. 219, 306–312 (2016)

    Article  Google Scholar 

  24. M. Gonzalez-Miquel, J. Bedia, C. Abrusci, J. Palomar, F. Rodriguez, Anion effects on kinetics and thermodynamics of CO2 absorption in ionic liquids. J. Phys. Chem. B 117, 3398–3406 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. M. Shiflett, A. Yokozeki, Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. J. Phys. Chem. B 111, 2070–2074 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. J.C. Kotz, P.M. Treichel, and J.R. Townsend, D. Treichel, Chemistry & chemical reactivity, Cengage Learning (2014)

  27. A.K. Ziyada, C.D. Wilfred, Physical properties of ionic liquids consisting of 1-butyl-3-propanenitrile-and 1-decyl-3-propanenitrile imidazolium-based cations: temperature dependence and influence of the anion. J. Chem. Eng. Data 59, 1232–1239 (2014)

    Article  CAS  Google Scholar 

  28. J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke, Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B 109, 6366–6374 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. A.K. Ziyada, C.D. Wilfred, Effect of temperature and anion on densities, viscosities, and refractive indices of 1-Octyl-3-propanenitrile imidazolium-based ionic liquids. J. Chem. Eng. Data 59, 1385–1390 (2014)

    Article  CAS  Google Scholar 

  30. S.N.V.K. Aki, B.R. Mellein, E.M. Saurer, J.F. Brennecke, High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J. Phys. Chem. B 108, 20355–20365 (2004)

    Article  CAS  Google Scholar 

  31. L. A. Blanchard, "Ionic Liquids-Carbon Dioxide Systems: Phase Behavior, Solubilities and Extraction," Ph.D, Chemical Engineering, University of Notre Dame, Notre Dame, 2000

  32. R. Baker, Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002)

    Article  CAS  Google Scholar 

  33. J.M. Pringle, J. Golding, K. Baranyai, C.M. Forsyth, G.B. Deacon, J.L. Scott, D.R. MacFarlane, The effect of anion fluorination in ionic liquids—physical properties of a range of bis (methanesulfonyl) amide salts. New J. Chem. 27, 1504–1510 (2003)

    Article  CAS  Google Scholar 

  34. G. Yu, S. Zhang, X. Yao, J. Zhang, K. Dong, W. Dai, R. Mori, Design of task-specific ionic liquids for capturing CO2: a molecular orbital study. Ind. Eng. Chem. Res. 45, 2875–2880 (2006)

    Article  CAS  Google Scholar 

  35. E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926–927 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. J. Bara, D. Camper, D. Gin, R. Noble, Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc. Chem. Res. 43, 152–159 (2009)

    Article  Google Scholar 

  37. T. Sarbu, T.J. Styranec, E.J. Beckman, Design and synthesis of low cost, sustainable CO2-philes. Ind. Eng. Chem. Res. 39, 4678–4683 (2000)

    Article  CAS  Google Scholar 

  38. H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109, 6103–6110 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. R. P. Swatloski, "Ionic Liquids as Green Solvents: Enabling New Materials and Technologies," Ph.D, Chemistry Department, University of Alabama, Tuscaloosa, 2005

  40. D. Zhao, "Design, synthesis and applications of functionalized ionic liquids," M.Sc., Chemistry, **nan Petroleum University, Nanchong, China, 2007

  41. W. Ren, B. Sensenich, A. Scurto, High-pressure phase equilibria of (carbon dioxide (CO2) + n-alkyl-imidazolium bis (trifluoromethylsulfonyl) amide) ionic liquids. J. Chem. Thermodyn. 42, 305–311 (2010)

    Article  CAS  Google Scholar 

  42. D. Almantariotis, T. Gefflaut, A. Pa Dua, J. Coxam, M. Costa Gomes, Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-Alkyl-3-methylimidazolium Bis (trifluoromethylsulfonyl) amide ionic liquids. J. Phys. Chem. B 114, 3608–3617 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. J.A. Schott, C.-L. Do-Thanh, W. Shan, N.G. Puskar, S. Dai, S.M. Mahurin, FTIR investigation of the interfacial properties and mechanisms of CO2 sorption in porous ionic liquids. Green Chemical Engineering 2, 392–401 (2021)

    Article  Google Scholar 

  44. C. Wu, T.P. Senftle, W.F. Schneider, First-principles-guided design of ionic liquids for CO 2 capture. Phys. Chem. Chem. Phys. 14, 13163–13170 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. X. Liu, K.E. O’Harra, J.E. Bara, C.H. Turner, Solubility behavior of CO2 in ionic liquids based on ionic polarity index analyses. J. Phys. Chem. B 125, 3665–3676 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. S.D. Hojniak, I.P. Silverwood, A.L. Khan, I.F. Vankelecom, W. Dehaen, S.G. Kazarian, K. Binnemans, Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs). J. Phys. Chem. B 118, 7440–7449 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. A.S. Shalygin, N.S. Nesterov, S.A. Prikhod’ko, N.Y. Adonin, O.N. Martyanov, S.G. Kazarian, Interactions of CO2 with the homologous series of CnMIMBF4 ionic liquids studied in situ ATR-FTIR spectroscopy: spectral characteristics, thermodynamic parameters and their correlation. J. Mol. Liq. 315, 113694 (2020)

    Article  CAS  Google Scholar 

  48. J. Huang, A. Riisager, R. Berg, R. Fehrmann, Tuning ionic liquids for high gas solubility and reversible gas sorption. J. Mol. Catal. A: Chem. 279, 170–176 (2008)

    Article  CAS  Google Scholar 

  49. J. Anthony, E. Maginn, J. Brennecke, Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106, 7315–7320 (2002)

    Article  CAS  Google Scholar 

  50. L. M. G. Sánchez, "Functionalized Ionic Liquids: Absorption Solvents for Carbon Dioxide and Olefin Separation," Ph.D, Chemical Engineering, Eindhoven University of Technology, Eindhoven, 2008

  51. Z. Fei, W.H. Ang, D. Zhao, R. Scopelliti, E.E. Zvereva, S.A. Katsyuba, P.J. Dyson, Revisiting ether-derivatized imidazolium-based ionic liquids. J. Phys. Chem. B 111, 10095–10108 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. J. Bara, C. Gabriel, S. Lessmann, T. Carlisle, A. Finotello, D. Gin, R. Noble, Enhanced CO2 separation selectivity in oligo (ethylene glycol) functionalized room-temperature ionic liquids. Ind. Eng. Chem. Res. 46, 5380–5386 (2007)

    Article  CAS  Google Scholar 

  53. T. Carlisle, J. Bara, C. Gabriel, R. Noble, D. Gin, Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind. Eng. Chem. Res. 47, 7005–7012 (2008)

    Article  CAS  Google Scholar 

  54. M. Muldoon, S. Aki, J. Anderson, J. Dixon, J. Brennecke, Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B 111, 9001–9009 (2007)

    Article  CAS  PubMed  Google Scholar 

  55. Y. Deng, S. Morrissey, N. Gathergood, A.M. Delort, P. Husson, M.F. Costa Gomes, The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility. ChemSusChem: Chem. Sustain. Energy Mater. 3, 377–385 (2010)

    Article  CAS  Google Scholar 

  56. A. M. Tagiuri, Studies of Solubility of CO2 in Ionic Liquids, Kinetics, and Heat of Reactions of CO2 in Promising Cyclic Amines: The University of Regina (Canada), 2019

  57. P. Carvalho, V. Álvarez, I. Marrucho, M. Aznar, J. Coutinho, High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. J. Supercrit. Fluids 52, 258–265 (2010)

    Article  CAS  Google Scholar 

  58. M. Koel, Physical and chemical properties of ionic liquids based on the dialkylimidazolium cation. Proc. Estonian Acad. Sci. Chem. 49, 145–155 (2000)

    Article  CAS  Google Scholar 

  59. H.W. Pennline, D.R. Luebke, K.L. Jones, C.R. Myers, B.I. Morsi, Y.J. Heintz, J.B. Ilconich, Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process. Technol. 89, 897–907 (2008)

    Article  CAS  Google Scholar 

  60. A. Finotello, J.E. Bara, D. Camper, R.D. Noble, Room-temperature ionic liquids: temperature dependence of gas solubility selectivity. Ind. Eng. Chem. Res. 47, 3453–3459 (2008)

    Article  CAS  Google Scholar 

  61. J.L. Anderson, J.N.K. Dixon, J.F. Brennecke, Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: comparison to other ionic liquids. Acc. Chem. Res. 40, 1208–1216 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Acknowledgment: The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/12/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbagi Osman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 617 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyada, A.K., Osman, A., Elbashir, A.A. et al. Exploring the Effect of Different Anions and Cations on the Solubility of CO2 in Nitrile Imidazolium-Based Ionic Liquids with Sulfonated-Based Anions. Korean J. Chem. Eng. 41, 1791–1803 (2024). https://doi.org/10.1007/s11814-024-00127-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00127-z

Keywords

Navigation