Log in

Improved Functional Expression of Carbon Monoxide Dehydrogenase from Carboxydothermus hydrogenoformans Using Genetically Engineered Escherichia coli Under Aerobic Conditions

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon monoxide dehydrogenase derived from Carboxydothermus hydrogenoformans (ChCODH) is a representative anaerobic enzyme that contains [4Fe–4S] clusters. To functionally express ChCODH under aerobic conditions in genetically engineered E. coli, co-expression with the SUF system that facilitates the assembly of iron–sulfur clusters under oxidative stress and iron limitation was performed. Results showed that compared to the expression of ChCODH alone under aerobic conditions, a 10-fold and 2-fold increase in the specific activity and protein yield, respectively, resulting in a total activity of up to 29,185 U/L was observed in E. coli co-expressed with ChCODH and the SUF system. Co-expression of Tig, a chaperone protein, and the addition of 2 mM FeSO4, which constitutes the iron-sulfur cluster, further increased the total activity up to 97,758 U/L. Moreover, the amount of Fe incorporated into ChCODH was proportional to the specific activity, while the amount of Ni was not correlated with the specific activity. Finally, high cell density cultivation under optimized aerobic conditions in the SUF system and the chaperone protein Tig co-expressed in recombinant E. coli resulted in a total activity of up to 235,689 U/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Meyer, L. Gremer, R. Ferner, M. Ferner, H. Dobbek, M. Gnida, W. Meyer-Klaucke, R. Huber, Biol. Chem. 381, 865 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. S.W. Ragsdale, Crit. Rev. Biochem. Mol. Biol. 39, 165 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber, O. Meyer, Science. 293, 1281 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. J. Przybyla-Toscano, M. Roland, F. Gaymard, J. Couturier, N. Rouhier, JBIC J. Biol. Inorg. Chem. 23, 545 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. M. Fontecave, S. Ollagnier-de-Choudens, Arch. Biochem. Biophys. 474, 226 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. J. Frazzon, D.R. Dean, Curr. Opin. Chem. Biol. 7, 166 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. B. Roche, L. Aussel, B. Ezraty, P. Mandin, B. Py, F. Barras, Biochim. Biophys. Acta Bioener. 1827, 455 (2013)

    Article  CAS  Google Scholar 

  8. M. Blahut, E. Sanchez, C.E. Fisher, F.W. Outten, Biochim. Biophys. Acta Mol. Cell. Res. 1867, 118829 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Takahashi, U. Tokumoto, J. Biol. Chem. 277, 28380 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. E.L. Mettert, P.J. Kiley, J. Bacteriol. 196, 4315 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  11. J.A. Imlay, Annu. Rev. Biochem. 77, 755 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Jang, J.A. Imlay, Mol. Microbiol. 78, 1448 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S.M. Kim, J. Lee, S.H. Kang, Y. Heo, H.-J. Yoon, J.-S. Hahn, H.H. Lee, Y.H. Kim, Nat. Catal. 5, 807 (2022)

    Article  CAS  Google Scholar 

  14. P.J. Muchowski, J.L. Wacker, Nat. Rev. Neurosci. 6, 11 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. V. Svetlitchnyi, C. Peschel, G. Acker, O. Meyer, J. Bacteriol. 183, 5134 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J.-H. Jeoung, H. Dobbek, Science. 318, 1461 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. M. Can, F.A. Armstrong, S.W. Ragsdale, Chem. Rev. 114, 4149 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Bauer, J. Shiloach, Biotechnol. Bioeng. 16, 933 (1974)

    Article  CAS  PubMed  Google Scholar 

  19. K. Han, H.C. Lim, J. Hong, Biotechnol. Bioeng. 39, 663 (1992)

    Article  CAS  PubMed  Google Scholar 

  20. G.L. Kleman, J.J. Chalmers, G.W. Luli, W.R. Strohl, Appl. Environ. Microbiol. 57, 918 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Majewski, M. Domach, Biotechnol. Bioeng. 35, 732 (1990)

    Article  CAS  PubMed  Google Scholar 

  22. G.L. Kleman, W.R. Strohl, Appl. Environ. Microbiol. 60, 3952 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3D3A1A01064929).

Funding

Ministry of Science and ICT, South Korea, 2015M3D3A1A01064929.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **won Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, C.G., Cho, S., Lee, T.H. et al. Improved Functional Expression of Carbon Monoxide Dehydrogenase from Carboxydothermus hydrogenoformans Using Genetically Engineered Escherichia coli Under Aerobic Conditions. Korean J. Chem. Eng. 41, 445–452 (2024). https://doi.org/10.1007/s11814-024-00034-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00034-3

Keywords

Navigation