Log in

Non-volatile and Stretchable Polyvinyl Chloride-Based Solid-State Electrolyte for Capacitive Energy Storage

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study introduces a novel approach to address the growing demand for flexible energy storage systems in wearable and human-integrated devices. A flexible supercapacitor (SC) system is developed using a plasticized polyvinyl chloride (PVC)-derived ionogel electrolyte. The ionogel consists of PVC, dibutyl adipate (DBA) plasticizer, and 1-ethyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide ([EMIM]+[TFSI]) ionic liquid (IL), offering impressive properties such as high stretchability (~ 2050%) and non-volatility. SCs assembled with activated carbon electrodes embedded in the ionogel exhibit remarkable electrochemical performance. They attain near-100% Coulombic efficiency (CE) up to 2.0 V and a specific capacitance of up to 64.8 F g−1, finely tuned by modulating the concentration of [EMIM]+[TFSI] IL. Significantly, the SC employing the optimized PVC-based ionogel demonstrates exceptional stability over 1000 charge–discharge cycles, maintaining both capacitance and CE. The non-volatile nature of the ionogel enhances its robustness under ambient conditions, contributing to long-term stability. Moreover, the potential integration of the PVC-based ionogel with flexible electrodes and a malleable current collector hints at the possibility of creating a highly stretchable SC system. This work advances the field of SC powering flexible electronics and accelerates their seamless integration into everyday life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Fan, B. Liu, J. Ding, Y. Deng, X. Han, W. Hu, C. Zhong, Batteries SupercapsSupercaps 3, 1262 (2020)

    Article  Google Scholar 

  2. X. Su, Y. Xu, Y. Wu, H. Li, J. Yang, Y. Liao, R. Qu, Z. Zhang, Energy Storage Mater. 56, 642 (2023)

    Article  Google Scholar 

  3. X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Adv. Energy Mater. 8, 1702184 (2018)

    Article  Google Scholar 

  4. K.C.S. Lakshmi, B. Vedhanarayanan, Batteries 9, 202 (2023)

    Article  CAS  Google Scholar 

  5. S. Ghosh, W.D. Yong, E.M. **, S.R. Polaki, S.M. Jeong, H. Jun, Korean J. Chem. Eng. 36, 312 (2019)

    Article  Google Scholar 

  6. Y.-L.Y. Ngo, J.S. Chung, S.H. Hur, Korean J. Chem. Eng. 37, 1589 (2020)

    Article  CAS  Google Scholar 

  7. Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang, Y. Wang, Y. Huang, H. Hou, X. **e, C. Zhi, Angew. Chem. Int. Ed.. Chem. Int. Ed. 56, 9141 (2017)

    Article  CAS  Google Scholar 

  8. H.N. Fard, G.B. Pour, M.N. Sarvi, P. Esmaili, Ionics 25, 2951 (2019)

    Article  CAS  Google Scholar 

  9. P. Hou, C. Gao, J. Wang, J. Zhang, Y. Liu, J. Gu, P. Huo, Chem. Eng. J. 454, 139954 (2023)

    Article  CAS  Google Scholar 

  10. X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, Y. Chen, Adv. Funct. Mater.Funct. Mater. 23, 3353 (2013)

    Article  CAS  Google Scholar 

  11. T.G. Yun, M. Park, D.-H. Kim, D. Kim, J.Y. Cheong, J.G. Bae, S.M. Han, I.-D. Kim, ACS Nano 13, 3141 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. L. Yu, G.Z. Chen, Front. Chem. 7, 272 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.W. Bae, E.-J. Shin, J. Jeong, D.-S. Choi, J.E. Lee, B.U. Nam, L. Lin, S.-Y. Kim, Sci. Rep. 7, 2068 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  14. H. Park, S.-J. Oh, D. Kim, M. Kim, C. Lee, H. Joo, I. Woo, J.W. Bae, J.-H. Lee, Adv. Sci. 9, 2201070 (2022)

    Article  CAS  Google Scholar 

  15. Y.J. Son, J.W. Bae, H.J. Lee, S. Bae, S. Baik, K.-Y. Chun, C.-S. Han, J. Mater. Chem. A 8, 6013 (2020)

    Article  CAS  Google Scholar 

  16. A. Wexler, J. Res. Natl. Bur. Stand. Phys. Chem. 80(A), 775 (1976)

    Article  Google Scholar 

  17. S.-H. Hyon, W.-I. Cha, Y. Ikada, Polym. Bull.. Bull. 22, 119 (1989)

    Article  CAS  Google Scholar 

  18. T.T. Bui, G. Giovanoulis, A.P. Cousins, J. Magnér, I.T. Cousins, C.A. Wit, Sci. Total. Environ. 541, 451 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. OECD Exsiting Chemicals Database. URL: https://hpvchemicals.oecd.org/ui/Search.aspx. Accessed on 19 Nov 2023

  20. S. Park, I. Nam, G.-P. Kim, J. Park, N.D. Kim, Y. Kim, J. Yi, Chem. Commun.Commun. 49, 1554 (2013)

    Article  CAS  Google Scholar 

  21. H. Eom, J. Kim, I. Nam, S. Bae, Materials 14, 6592 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Zhao, C. Wang, Z. Yue, K. Shu, G.G. Wallace, A.C.S. Appl, Mater. Interfaces 5, 9008 (2013)

    Article  CAS  Google Scholar 

  23. O. Kwon, J. Kang, S. Jang, S. Choi, H. Eom, J. Shin, J.-K. Park, S. Park, I. Nam, J. Vis. Exp. 189, e64057 (2022)

    Google Scholar 

  24. A. Alleagui, T.J. Freeborn, A.S. Elwakil, B.J. Maundy, Sci. Rep. 6, 38568 (2016)

    Article  Google Scholar 

  25. I. Nam, S. Park, G.-P. Kim, J. Park, J. Yi, Chem. Sci. 4, 1663 (2013)

    Article  CAS  Google Scholar 

  26. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010)

    Article  CAS  Google Scholar 

  27. C.M.S. Prasanna, S.A. Surthanthiraraj, J. Polym. Res.Polym. Res. 23, 1 (2016)

    Article  CAS  Google Scholar 

  28. I. Minami, H. Kamimura, S. Mori, J. Synth. Lubr.Lubr. 24, 135 (2007)

    Article  CAS  Google Scholar 

  29. P. Xu, H. Chen, X. Zhou, H. **ang, J. Membr. Sci.Membr. Sci. 617, 118660 (2021)

    Article  CAS  Google Scholar 

  30. S. **ang, S. Chen, M. Yao, F. Zheng, Q. Lu, J. Mater. Chem. C 7, 9625 (2019)

    Article  CAS  Google Scholar 

  31. M. Yu, X. Feng, Joule 3, 338 (2019)

    Article  CAS  Google Scholar 

  32. D. Qu, J. Power. Sources 109, 403 (2002)

    Article  CAS  Google Scholar 

  33. T.K. Nguyen, S. Aberoumand, D.V. Dao, Small 17, 2101775 (2021)

    Article  CAS  Google Scholar 

  34. A. Khorate, A.V. Kadam, J. Energy Storage 52, 104887 (2022)

    Article  Google Scholar 

  35. J. Kang, J. Wen, S.H. Jayaram, A. Yu, X. Wang, Electrochim. Acta. Acta 115, 587–598 (2014)

    Article  CAS  Google Scholar 

  36. A. Allison, H.A. Andreas, J. Power. Sources 426, 93 (2019)

    Article  CAS  Google Scholar 

  37. Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan, Y. She, Z. Zheng, Adv. Mater. 29, 1606679 (2017)

    Article  Google Scholar 

  38. S. Park, Y.G. Yoo, I. Nam, S. Bae, J. Yi, Energy Technol. 2, 677 (2014)

    Article  CAS  Google Scholar 

  39. Y.W. Kim, I.H. Oh, S. Choi, I. Nam, S.T. Chang, Chem. Eng. J. 454, 140117 (2023)

    Article  CAS  Google Scholar 

  40. S. Palchoudhury, K. Ramasamy, R.K. Gupta, A. Gupta, Front. Mater. 5, 83 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by BK-21 FOUR program through the National Research Foundation of Korea (NRF) under the Ministry of Education and Project No. 2021R1A2C2011898 under the Ministry of Science and ICT (MIST). This paper was also supported by the Education and Research Promotion Program of KOREATECH in 2022. The authors thank the Cooperative Equipment Center at KOREATECH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soomin Park or ** Woo Bae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2109 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, SJ., Park, HS., Lee, K. et al. Non-volatile and Stretchable Polyvinyl Chloride-Based Solid-State Electrolyte for Capacitive Energy Storage. Korean J. Chem. Eng. 41, 1861–1869 (2024). https://doi.org/10.1007/s11814-024-00018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00018-3

Keywords

Navigation