Log in

Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As disinfection is employed extensively, disinfection by-product bromate has become an emerging environmental issue due to its carcinogenic toxicity. For develo** an effective alternative approach for reducing bromate, cobalt and nickel-based Prussian Blue (PB) analogues are proposed here for incorporating a convenient reducing agent, NaBH4 (i.e., a H2-rich reagent) for reducing bromate to bromide as cobalt and nickel are recognized as effective metals for catalyzing hydrolysis of NaBH4, and PB exhibits versatile catalytic activity. While CoPB and NiPB are comprised of the same crystalline structure, CoPB exhibits slightly higher specific surface area, more reductive surface, and more superior electron transfer than NiPB, enabling CoPB to accelerate bromate reduction. CoPB also exhibits a higher affinity towards NaBH4 than NiPB based on density functional theory calculations. Moreover, CoPB also exhibits a relatively low activation energy (i.e., 59.5 kJ/mol) of bromate reduction than NiPB (i.e., 63.2 kJ/mol). Furthermore, bromate reduction by CoPB and NiPB could be also considerably enhanced under acidic conditions, and CoPB and NiPB could still effectively remove bromate even in the presence of nitrate, sulfate and phosphate. CoPB and NiPB are also validated to be recyclable for reducing bromate, indicating that CoPB and NiPB are promising heterogeneous catalysts for reducing bromate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chin and P. R. Bérubé, Water Res., 39, 2136 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. P. Deeudomwongsa, S. Phattarapattamawong and K Y. A. Lin, Chemosphere, 184, 1215 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. I. A. Ike, Y. Lee and J. Hur, Chem. Eng. J., 375, 121929 (2019).

    Article  CAS  Google Scholar 

  4. M. R. Khan, Z. A. Alothman, N. J. Alqahtani, I. H. Alsohaimi and M. Naushad, Anal. Methods, 6, 4038 (2014)

    Article  CAS  Google Scholar 

  5. U. Pinkernell and U. von Gunten, Environ. Sci. Technol., 35, 2525 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. K. Liu, J. Lu and Y. Ji, Water Res., 84, 1 (2015).

    Article  PubMed  Google Scholar 

  7. Z. Li, Z. Chen, Y. **ang, L. Ling, J. Fang, C. Shang and D. D. Dionysiou, Water Res., 83, 132 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. J. A. Wiśniewski and M. Kabsch-Korbutowicz, Desalination, 261, 197 (2010).

    Article  Google Scholar 

  9. A. Bhatnagar, Y. Choi, Y. Yoon, Y. Shin, B.-H. Jeon and J.-W. Kang, J. Hazard. Mater., 170, 134 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. K. Listiarini, J. T. Tor, D. D. Sun and J. O. Leckie, J. Membr. Sci., 365, 154 (2010).

    Article  CAS  Google Scholar 

  11. M. Naushad, Z. A. ALOthman, M. R. Khan and S. M. Wabaidur, Clean, 41, 528 (2013).

    CAS  Google Scholar 

  12. M. Naushad, M. R. Khan, Z. A. Alothman and M. R. Awual, Desalination Water Treat., 57, 5781 (2016).

    Article  CAS  Google Scholar 

  13. M. Naushad, P. Senthil Kumar and S. Suganya, Bromate formation in drinking water and its control using graphene based materials, in: M. Naushad (Ed.) A New Generation Material Graphene: Applications in Water Technology, Springer International Publishing, Cham, 239 (2019).

    Chapter  Google Scholar 

  14. A. Sharma, G. Sharma, M. Naushad and D. Pathania, J. Chil. Chem. Soc., 61, 2940 (2016).

    Article  CAS  Google Scholar 

  15. M. Naushad, M. R. Khan, Z. A. Alothman, I. AlSohaimi, F. Rodriguez-Reinoso, T. M. Turki and R. Ali, Environ. Sci. Pollut. Res. Int., 22, 15853 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. K.-Y. A. Lin and C.-H. Lin, Chem. Eng. J., 297, 19 (2016).

    Article  CAS  Google Scholar 

  17. K.-Y. A. Lin and C.-H. Lin, Chem. Eng. J., 325, 144 (2017).

    Article  CAS  Google Scholar 

  18. K.-Y. A. Lin, C.-H. Lin and J.-Y. Lin, J. Colloid Interface Sci., 504, 397 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. K.-Y. A. Lin, J.-Y. Lin and H.-L. Lien, Chemosphere, 172, 325 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Y.-T. Chiu, P.-Y. Lee, T. Wi-Afedzi, J. Lee and K.-Y. A. Lin, J. Colloid Interface Sci., 532, 416 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. S. Kliber and J. A. Wisniewski, Desalination Water Treat., 35, 158 (2011).

    Article  CAS  Google Scholar 

  22. M. Moslemi, S. H. Davies and S. J. Masten, Environ. Eng. Sci., 29, 1092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Lu, Q. Yang, T. Hu, J. Wang and W. Tang, Chem. Eng. J., 446, 137356 (2022).

    Article  CAS  Google Scholar 

  24. S. Tang, J. Yao, H. Liu and Y. Zhang, J. Environ. Chem. Eng., 10, 107099 (2022).

    Article  CAS  Google Scholar 

  25. J. Restivo, O. S. G. P. Soares, J. J. M. Órfão and M. F. R. Pereira, Chem. Eng. J., 263, 119 (2015).

    Article  CAS  Google Scholar 

  26. P. Zhang, F. Jiang and H. Chen, Chem. Eng. J., 234, 195 (2013).

    Article  CAS  Google Scholar 

  27. K.-Y. A. Lin, C.-H. Lin, S.-Y. Chen and H. Yang, Chem. Eng. J., 303, 596 (2016).

    Article  CAS  Google Scholar 

  28. K.-Y. A. Lin, C.-H. Lin and H. Yang, J. Environ. Chem. Eng., 5, 5085 (2017).

    Article  CAS  Google Scholar 

  29. B.-C. Li, H. Yang, E. Kwon, D. Dinh Tuan, T. Cong Khiem, G. Lisak, B. Xuan Thanh, F. Ghanbari and K.-Y. Andrew Lin, Sep. Purif. Technol., 119320 (2021).

  30. N. Nurlan, A. Akmanova and W. Lee, Nanomaterials, 12, 1212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z. Dong, F. Sun, W. Dong and C. Jiang, Environ. Eng. Sci., 35, 176 (2018).

    Article  CAS  Google Scholar 

  32. Z. Dong, W. Dong, F. Sun, R. Zhu and F. Ouyang, React. Kinet., Mech. Catal., 107, 231 (2012).

    Article  CAS  Google Scholar 

  33. M. Li, X. Zhou, J. Sun, H. Fu, X. Qu, Z. Xu and S. Zheng, Sci. Total Environ., 663, 673 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Y.-T. Chiu, H. Wang, J. Lee and K.-Y. A. Lin, Process Saf. Environ. Prot., 127, 36 (2019).

    Article  CAS  Google Scholar 

  35. L. H. Rude, T. K. Nielsen, D. B. Ravnsbæk, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher and T. R. Jensen, Phys. Status Solidi (a), 208, 1754 (2011).

    Article  CAS  Google Scholar 

  36. R. Peña-Alonso, A. Sicurelli, E. Callone, G. Carturan and R. Raj, J. Power Sources, 165, 315 (2007).

    Article  Google Scholar 

  37. Y. S. Wei, W. Meng, Y. Wang, Y. X. Gao, K. Z. Qi and K. Zhang, Int. J. Hydrogen Energy, 42, 6072 (2017).

    Article  CAS  Google Scholar 

  38. F. Li, Q. Li and H. Kim, Chem. Eng. J., 210, 316 (2012).

    Article  CAS  Google Scholar 

  39. G. R. M. Tomboc, A. H. Tamboli and H. Kim, Energy, 121, 238 (2017).

    Article  CAS  Google Scholar 

  40. Y. V. Larichev, O. V. Netskina, O. V. Komova and V. I. Simagina, Int. J. Hydrogen Energy, 35, 6501 (2010).

    Article  CAS  Google Scholar 

  41. D. D. Tuan and K. Y. A. Lin, Chem. Eng. J., 351, 48 (2018).

    Article  CAS  Google Scholar 

  42. D. D. Tuan, C.-W. Huang, X. Duan, C.-H. Lin and K.-Y. A. Lin, Int. J. Hydrogen Energy, 45, 31952 (2020).

    Article  CAS  Google Scholar 

  43. D. D. Tuan and K.-Y. A. Lin, J. Taiwan Inst. Chem. Eng., 91, 274 (2018).

    Article  CAS  Google Scholar 

  44. D. D. Tuan, E. Kwon, J.-Y. Lin, X. Duan, Y.-F. Lin and K.-Y. A. Lin, Chem. Papers, 75, 779 (2021).

    Article  CAS  Google Scholar 

  45. N. Nurlan, A. Akmanova, S. Han and W. Lee, Chem. Eng. J., 414, 128860 (2021).

    Article  CAS  Google Scholar 

  46. Y. Chen, W. Yang, S. Gao, Y. Gao, C. Sun and Q. Li, Sep. Purif. Technol., 251, 117353 (2020).

    Article  CAS  Google Scholar 

  47. Q. **ao and S. Yu, J. Hazard. Mater., 418, 125940 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Y. You, H. Yuan, Y. Wu, Y. Ma, C. Meng and X. Zhao, Sep. Purif. Technol., 264, 118456 (2021).

    Article  CAS  Google Scholar 

  49. J. Li, L. He, J. Jiang, Z. Xu, M. Liu, X. Liu, H. Tong, Z. Liu and D. Qian, Electrochim. Acta, 353, 136579 (2020).

    Article  CAS  Google Scholar 

  50. D. D. Tuan and K.-Y. A. Lin, Chem. Eng. J., 351, 48 (2018).

    Article  CAS  Google Scholar 

  51. D. D. Tuan, H. Yang, N. N. Huy, E. Kwon, T. C. Khiem, S. You, J. Lee and K.-Y. A. Lin, J. Environ. Chem. Eng., 9, 105809 (2021).

    Article  CAS  Google Scholar 

  52. K.-Y. A. Lin and S.-Y. Chen, ACS Sustain. Chem. Eng., 3, 3096 (2015).

    Article  CAS  Google Scholar 

  53. K. Y. A. Lin, J. Y. Lin and H. L. Lien, Chemosphere, 172, 325 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. K. Y. A. Lin and C. H. Lin, Chem. Eng. J., 325, 144 (2017).

    Article  CAS  Google Scholar 

  55. C. Wu, F. Wu, Y. Bai, B. L. Yi and H. M. Zhang, Mater. Lett., 59, 1748 (2005).

    Article  CAS  Google Scholar 

  56. R. Krishna, D. M. Fernandes, C. Dias, J. Ventura, E. Venkata Ramana, C. Freire and E. Titus, Int. J. Hydrogen Energy, 40, 4996 (2015).

    Article  CAS  Google Scholar 

  57. P. Brack, S. E. Dann and K. G. U. Wijayantha, Energy Sci. Eng., 3, 174 (2015).

    Article  CAS  Google Scholar 

  58. J. C. Walter, A. Zurawski, D. Montgomery, M. Thornburg and S. Revankar, J. Power Sources, 179, 335 (2008).

    Article  CAS  Google Scholar 

  59. T. Wi-Afedzi, E. Kwon, D. D. Tuan, K.-Y. A. Lin and F. Ghanbari, Sci. Total Environ., 703, 134781 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. T. Wi-Afedzi, F.-Y. Yeoh, M.-T. Yang, A. C. K. Yip and K.-Y. A. Lin, Sep. Purif. Technol., 218, 138 (2019).

    Article  CAS  Google Scholar 

  61. C.-H. Liu, B.-H. Chen, C.-L. Hsueh, J.-R. Ku, M.-S. Jeng and F. Tsau, Int. J. Hydrogen Energy, 34, 2153 (2009).

    Article  CAS  Google Scholar 

  62. L. Ai, X. Liu and J. Jiang, J. Alloys Compd., 625, 164 (2015).

    Article  CAS  Google Scholar 

  63. B. Cui, G. Wu, S. Qiu, Y. Zou, E. Yan, F. Xu, L. Sun and H. Chu, Adv. Sustain. Syst., 5, 2100209 (2021).

    Article  CAS  Google Scholar 

  64. T. Ohno, Analyst, 114, 857 (1989).

    Article  CAS  Google Scholar 

  65. A.W.W.A.W.E.F. American Public Health Association, Standard Methods for the Examination of Water and Wastewater 22 nd ed., Method 4500-CN- A,B,C,D and E, in, Washington, DC, USA, 4 (2012).

Download references

Acknowledgements

The authors are grateful for the funding granted from the Ministry of Science and Technology, and technical support from the National Center for High-Performance Computing, Taiwan. The authors gratefully acknowledge the use of SQUID000200 of MOST111-2731-M-006-001 belonging to the Core Facility Center of National Cheng Kung University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Feng Lin or Kun-Yi Andrew Lin.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2023_1445_MOESM1_ESM.pdf

Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, PH., Park, YK., Lin, YF. et al. Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride. Korean J. Chem. Eng. 40, 2876–2885 (2023). https://doi.org/10.1007/s11814-023-1445-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1445-8

Keywords

Navigation