Log in

Carbon dioxide absorption by Ammonia-promoted aqueous triethanolamine solution in a packed bed

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CO2 absorption by ammonia added triethanolamine aqueous solution as a promoter was investigated in terms of absorption percentage (AP), overall volumetric mass transfer coefficient (KGae), and molar flux (NA) in a packed column. Three variables of ammonia concentration (0–5 wt%), Triethanolamine concentration (10–30 wt%), and gas flow rate (1,500–2,500 ml/min) were considered as significant variables in absorption performance. Effect of these variables and their interactions were inspected using the three level factorial response-surface method. Statistical analysis of the results showed that an ammonia concentration with 72.99%, 71.83, and 81.12% has the greatest effect on AP%, NA, and KGae, respectively. Then, gas flow rate with 5.27% and 3.90%, had a great effect on AP% and KGae, respectively. Finally, the optimal operating conditions were determined to maximize the responses. Under optimal operating conditions, the maximum values for AP%, KGae, and NA were 98.94%, 0.202 kmol/h·m3·kPa, and 3.901 kmol/m2·h, respectively. Thus, adding ammonia to triethanolamine considerably improves the mass transfer performance of solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Working Group II to the Fourth Assessment Report of the Intergovernmental Panel, Climate Change 2007: Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2007).

  2. J.-G. Lu, M.-d. Cheng, J. Yan and H. Zhang, J. Fuel Chem. Technol., 37, 740 (2009).

    Article  CAS  Google Scholar 

  3. Intergovernmental Panel on Climate Working Group 1, Scientific Assessment of Climate Change, Cambridge University Press, Cambridge, Great Britain, New York, NY, USA and Melbourne, Australia (1990).

    Google Scholar 

  4. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland and I. Wright, J. Environ. Sci., 20, 14 (2008).

    Article  CAS  Google Scholar 

  5. S. Hasanizadeh and P. Valeh-e-Sheyda, Environ. Prog. Sustain. Energy, 41, e13788 (2022).

    CAS  Google Scholar 

  6. A. Houshmand, M. S. Shafeeyan, A. Arami-Niya and W. M. A. W. Daud, J. Taiwan Inst. Chem., 44, 774 (2013).

    Article  CAS  Google Scholar 

  7. M. S. Shafeeyan, W. M. A. W. Daud, A. Shamiri and N. Aghamohammadi, Chem. Eng. Res. Des., 104, 42 (2015).

    Article  CAS  Google Scholar 

  8. P. Valeh-e-Sheyda and A. Afshari, Process Saf. Environ. Prot., 127, 125 (2019).

    Article  CAS  Google Scholar 

  9. H. Pashaei and A. Ghaemi, Iran. J. Chem. Chem. Eng., 41, 2771 (2021).

    Google Scholar 

  10. P. Valeh-e-Sheyda and J. Barati, Process Saf. Environ. Prot., 146, 54 (2021).

    Article  CAS  Google Scholar 

  11. M. Akbari and P. Valeh-e-Sheyda, Process Saf. Environ. Prot., 132, 116 (2019).

    Article  CAS  Google Scholar 

  12. P. Valeh-e-Sheyda, M. Faridi Masouleh and P. Zarei-Kia, Fluid Phase Equilib., 546, 113136 (2021).

    Article  CAS  Google Scholar 

  13. S. Maneshdavi, S. M. Peyghambarzadeh, S. Sayyahi and S. Azizi, J. Chem. Pet. Eng., 54, 57 (2020).

    CAS  Google Scholar 

  14. P. Valeh-e-Sheyda and H. Rashidi, Appl. Therm. Eng., 98, 1241 (2016).

    Article  CAS  Google Scholar 

  15. M. D. La Rubia, R. Pacheco, A. Sánchez, A. B. L. García, S. Sánchez and F. Camacho, Int. J. Chem. React. Eng., 10, 1 (2012).

    Google Scholar 

  16. M.-K. Kang, S.-B. Jeon, M.-H. Lee and K.-J. Oh, Korean J. Chem. Eng., 30, 1171 (2013).

    Article  CAS  Google Scholar 

  17. S. Sarlak and P. Valeh-e-Sheyda, Energy, 239, 122349 (2022).

    Article  CAS  Google Scholar 

  18. F. Li, A. Hemmati and H. Rashidi, Process Saf. Environ. Prot., 142, 83 (2020).

    Article  CAS  Google Scholar 

  19. A. Singh, Y. Sharma, Y. Wupardrasta and K. Desai, Resour. Efficient Technol., 2, S165 (2016).

    Article  Google Scholar 

  20. S.-H. Yeon, B. Sea, Y.-I. Park, K.-S. Lee and K.-H. Lee, Sep. Sci. Technol., 39(14), 3281 (2004).

    Article  CAS  Google Scholar 

  21. G. Qi, S. Wang, H. Yu, P. Feron and C. Chen, Energy Procedia, 37, 1968 (2013).

    Article  CAS  Google Scholar 

  22. P.S. Nair and P. Selvi, Int. J. Sci. Res. Publication, 4, 1 (2014).

    Google Scholar 

  23. S.-B. Jeon, H.-D. Lee, M.-K. Kang, J.-H. Cho, J.-B. Seo and K.-J. Oh, J. Taiwan Inst. Chem., 44, 1003 (2013).

    Article  CAS  Google Scholar 

  24. S.-W. Park, B.-S. Choi and J.-W. Lee, Korean J. Chem. Eng., 23, 138 (2006).

    Article  CAS  Google Scholar 

  25. Q. Zeng, Y. Guo, Z. Niu and W. Lin, Ind. Eng. Chem. Res., 50, 10168 (2011).

    Article  CAS  Google Scholar 

  26. R. Billet and M. Schultes, Chem. Eng. Res. Des., 77, 498 (1999).

    Article  CAS  Google Scholar 

  27. A. A. Khan, G. Halder and A. Saha, Int. J. Greenh. Gas Control., 32, 15 (2015).

    Article  CAS  Google Scholar 

  28. A. Rezaei, P. Pakzad, M. Mofarahi, A. A. Izadpanah, M. Afkhamipour and C.-H. Lee, J. Chem. Eng. Data, 66, 2942 (2021).

    Article  CAS  Google Scholar 

  29. M. K. Kang, S. B. Jeon, M. H. Lee and K. J. Oh, Korean J. Chem. Eng., 30, 1171 (2013).

    Article  CAS  Google Scholar 

  30. A. Hemmati and H. Rashidi, Process Saf. Environ. Prot., 121, 77 (2019).

    Article  CAS  Google Scholar 

  31. D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons (2017).

  32. K. Fu, T. Sema, Z. Liang, H. Liu, Y. Na, H. Shi, R. Idem and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 51, 12058 (2012).

    Article  CAS  Google Scholar 

  33. H. Rashidi and S. Sahraie, Energy, 221, 119799 (2021).

    Article  CAS  Google Scholar 

  34. L. Tan, A. Shariff, K. Lau and M. Bustam, J. Ind. Eng. Chem., 18, 1874 (2012).

    Article  CAS  Google Scholar 

  35. F. Wei, Y. He, P. Xue, Y. Yao, C. Shi and P. Cui, Ind. Eng. Chem. Res., 53, 4462 (2014).

    Article  CAS  Google Scholar 

  36. S. Sahraie, H. Rashidi and P. Valeh-e-Sheyda, Process Saf. Environ. Prot., 122, 161 (2019).

    Article  CAS  Google Scholar 

  37. N. Kittiampon, A. Kaewchada and A. Jaree, Int. J. Greenh. Gas Control., 63, 431 (2017).

    Article  CAS  Google Scholar 

  38. S. Ma, B. Zang, H. Song, G. Chen and J. Yang, Int. J. Heat Mass Transf., 67, 696 (2013).

    Article  CAS  Google Scholar 

  39. F. Chu, Y. Liu, L. Yang, X. Du and Y. Yang, Appl. Energy, 205, 1596 (2017).

    Article  CAS  Google Scholar 

  40. P. Asgarifard, M. Rahimi and N. Tafreshi, Can. J. Chem. Eng., 99, 601 (2021).

    Article  CAS  Google Scholar 

  41. G. Derringer and R. Suich, J. Qual. Technol., 12, 214 (1980).

    Article  Google Scholar 

  42. Q. Zeng, Y. Guo, Z. Niu and W. Lin, Fuel Process. Technol., 108, 76 (2013).

    Article  CAS  Google Scholar 

  43. S. Ma, G. Chen, S. Zhu, T. Han and W. Yu, Appl. Energy, 162, 354 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the financial support of Kermanshah University of Technology for this research under Grant Number S/P/T/1432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rashidi.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, H., Azimi, H. & Rasouli, P. Carbon dioxide absorption by Ammonia-promoted aqueous triethanolamine solution in a packed bed. Korean J. Chem. Eng. 40, 2282–2292 (2023). https://doi.org/10.1007/s11814-023-1403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1403-5

Keywords

Navigation