Log in

Solids Mixing Intensification in Tapered Fluidized Beds with an Inlet Jet: Experimental Validation and CFD Simulation

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this article, the intensification of solids mixing in tapered fluidized beds equipped with an inlet jet and varying apex angles (2.86°, 5.71°, and 8.53°) has been investigated. In this regard, a particle segregation number (PSN) and multi-fluid modeling (MFM) approach were employed to analyze the mixing process. The study utilized solid mixtures composed of particles with a density of 2500 kg/m3 and diameters of 240 and 510 µm. Simulation results were validated against our experimental data obtained using a small tapered bed without an inlet jet and those obtained using a larger tapered bed with an inlet jet, as Huilin et al. (2003) reported. This validation demonstrates satisfactory agreement between the simulation results and experimental data. The solids mixing process in a columnar fluidized bed was found to resemble that in a tapered bed with an apex angle of 2.86°. Increasing the apex angle leads to a larger equilibrium mixing value. In addition, the influences of inlet jet velocity and nozzle diameter on the solids mixing process were investigated. The simulation results indicated that higher inlet jet velocities and larger nozzle diameters enhance the equilibrium mixing index value. Notably, inlet jet velocities of 0.7 and 0.8 m/s exhibited three distinct solids mixing stages: rapid, slow, and equilibrium, whereas higher jet velocities only involved rapid and equilibrium mixing stages. Moreover, this study further examined how the initial arrangement of solid particles affects the mixing index, providing valuable insights into optimizing the solids mixing process. Furthermore, the present work sheds light on the factors influencing the mixing of solids in tapered fluidized beds, offering valuable insights for further research and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data can be avialble upon the request.

Abbreviations

C D :

Drag coefficient

C f :

Friction coefficient

d m :

Average solids mixture diameter, m

D 0 :

Bottom diameter of the bed, m

D 1 :

Top diameter of the bed, m

e :

Restitution coefficient

e a :

Approximate relative error

E fr :

Rate of frictional dissipation energy

f :

Drag correlation parameter

Fr :

Empirical constant, Pa

\(\vec{g}\) :

Gravitational acceleration, m s2

g 0,ss :

Radial distribution function

H 0 :

Static bed height, m

H exp :

Height of the expanded bed, m

h k :

Distance of the kth cell center from the gas distributor

I :

Unit stress tensor

I gm :

Momentum transfer between the gas phase and the mth solid phase

I mk :

Momentum exchange between solid–solid phases

I 2D :

Second invariant of the deviatory stress tensor, s2

J coll :

Dissipation of granular energy via inelastic collisions, kg m–1 s–3

J vis :

Dissipation of granular energy via viscous dissipation of the gas phase, kg m–1 s–3

k :

Turbulence kinetic energy, m2 s2

k Θs :

Diffusion coefficient of granular energy, kg m1 s1

K fs :

Momentum exchange coefficient between fluid and solid phase, kg m3 s1

MI :

Mixing index

N :

Number of grid cells

P :

Pressure, Pa

P g :

Gas pressure, Pa

P m :

Solid phase pressure, Pa

P 0 :

Atmospheric pressure, Pa

ΔP :

Pressure drop, Pa

–∆P N :

Net pressure drop, Pa

–∆ P fr :

Frictional term of pressure drop, Pa

–∆ P kin :

Kinetic term of pressure drop, Pa

P top :

Pressure drops in tapered bed, Pa

P col :

Pressure drops in columnar bed, Pa

PSN :

Particle segregation number

∆h :

Bed height, m

q :

Pseudo-thermal energy flux vector

S m :

Solid phase source term, Pa m–1

t :

Time, s

U 0 :

Superficial gas velocity, m s1

u g :

Velocity of the gas phase, m s1

u m :

Velocity of the mth solid phase, m s1

u g,z :

Gas velocity component in the axial direction, m s–1

V k :

Volume of the kth cell

ε :

Dissipation rate, m2 s–3

ε g :

Volume fraction of gas phase

ε m :

Volume fraction of mth solid phase

ε* :

Maximum solid packing in binary solid mixtures

ε s ,k :

Volume fraction of the solid phase (flotsam or jetsam) in the kth cell

Θs :

Granular temperature, m2 s–2

μ b :

Bulk viscosity, Pa s

μ m :

Shear viscosity, Pa s

μ t :

Turbulent viscosity, Pa s

ρ :

Density, kg m–3

ρ g :

Density of gas phase kg m–3

ρ j :

Density of jetsam particles kg m–3

ρ f :

Density of jetsam particles kg m–3

ρ m :

Density of mth solid phase kg m–3

β gm :

The interphase momentum exchange coefficient between the gas phase and the mth solid phase

β mk :

Rate of exchange of solid–solid momentum

εo :

Bed voidage

τ g :

Stress tensor of gas phase, Pa

Γ slip :

Production of granular energy through the slip between the phases, kg m–1 s–3

col:

Collisional

con:

Conventional bed

f :

Fluid phase

fr:

Frictional

kin:

Kinetic

max:

Maximum

min:

Minimum

s :

Solid phase

t :

Turbulent

T :

Transpose

References

  1. S. Wu, J. Baeyens, Segregation by size difference in gas fluidized beds. Powder Technol. 98, 139 (1998)

    Article  CAS  Google Scholar 

  2. P.T. Shannon, Fluid Dynamics of Gas Fluidized Batch Systems (Illinois Institute of Technology, 1959)

    Google Scholar 

  3. P.M.C. Lacey, Developments in the theory of particle mixing. J. Appl. Chem. 4, 257 (1954)

    Article  CAS  Google Scholar 

  4. M. Ashton, F. Valentin, The mixing of powders and particles in industrial mixers. Trans. Inst. Chem. Eng. 44, 166 (1966)

    Google Scholar 

  5. L. Fan, Y. Chang, Mixing of large particles in two-dimensional gas fluidized beds. Can. J. Chem. Eng. 57, 88 (1979)

    Article  Google Scholar 

  6. M. Goldschmidt, J. Link, S. Mellema, J. Kuipers, Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidised beds. Powder Technol. 138, 135 (2003)

    Article  CAS  Google Scholar 

  7. N.K. Keller, Mixing and Segregation in 3d Multi-Component, Two-Phase Fluidized Beds (Iowa State University, 2012)

    Book  Google Scholar 

  8. G. Kwant, W. Prins, W. Van Swaaij, Particle mixing and separation in a binary solids floating fluidized bed. Powder Technol. 82, 279 (1995)

    Article  CAS  Google Scholar 

  9. P. Rowe, A preliminary quantitative study of particle segregation in gas fluidised beds-binary systems of near spherical particles. Trans. IChemE 50, 324 (1972)

    CAS  Google Scholar 

  10. A. Sahoo, G. Roy, Mixing characteristics of irregular binaries in a promoted gas–solid fluidized bed: a mathematical model. Can. J. Chem. Eng. 86, 53 (2008)

    Article  CAS  Google Scholar 

  11. Y.C. Seo, M.H. Ko, Y. Kang, Axial mixing of resin beads in a gas-solid fluidized bed. Korean J. Chem. Eng. 9, 212 (1992)

    Article  CAS  Google Scholar 

  12. M.J. Rhodes, X.S. Wang, M. Nguyen, P. Stewart, K. Liffman, Study of mixing in gas-fluidized beds using a dem model. Chem. Eng. Sci. 56, 2859 (2001)

    Article  CAS  Google Scholar 

  13. H. Norouzi, N. Mostoufi, Z. Mansourpour, R. Sotudeh-Gharebagh, J. Chaouki, Characterization of solids mixing patterns in bubbling fluidized beds. Chem. Eng. Res. Des. 89, 817 (2011)

    Article  CAS  Google Scholar 

  14. R. Zhu, W. Zhu, L. **ng, Q. Sun, Dem simulation on particle mixing in dry and wet particles spouted bed. Powder Technol. 210, 73 (2011)

    Article  CAS  Google Scholar 

  15. Z. Peng, E. Doroodchi, Y. Alghamdi, B. Moghtaderi, Mixing and segregation of solid mixtures in bubbling fluidized beds under conditions pertinent to the fuel reactor of a chemical loo** system. Powder Technol. 235, 823 (2013)

    Article  CAS  Google Scholar 

  16. L. Huilin, H. Yurong, D. Gidaspow, Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow. Chem. Eng. Sci. 58, 1197 (2003)

    Article  Google Scholar 

  17. L. Huilin, H. Yurong, D. Gidaspow, Y. Lidan, Q. Yukun, Size segregation of binary mixture of solids in bubbling fluidized beds. Powder Technol. 134, 86 (2003)

    Article  Google Scholar 

  18. M. Coroneo, L. Mazzei, P. Lettieri, A. Paglianti, G. Montante, Cfd prediction of segregating fluidized bidisperse mixtures of particles differing in size and density in gas–solid fluidized beds. Chem. Eng. Sci. 66, 2317 (2011)

    Article  CAS  Google Scholar 

  19. H. Zhong, J. Gao, C. Xu, X. Lan, Cfd modeling the hydrodynamics of binary particle mixtures in bubbling fluidized beds: effect of wall boundary condition. Powder Technol. 230, 232 (2012)

    Article  CAS  Google Scholar 

  20. M. Mostafazadeh, H. Rahimzadeh, M. Hamzei, Numerical analysis of the mixing process in a gas–solid fluidized bed reactor. Powder Technol. 239, 422 (2013)

    Article  CAS  Google Scholar 

  21. M. Banaei, N. Deen, M. van Sint Annaland, J. Kuipers, Particle mixing rates using the two-fluid model. Particuology 36, 13 (2018)

    Article  CAS  Google Scholar 

  22. M. Banaei, J. Jegers, M. van Sint Annaland, J. Kuipers, N. Deen, Tracking of particles using tfm in gas-solid fluidized beds. Adv. Powder Technol. 29, 2538 (2018)

    Article  CAS  Google Scholar 

  23. F. Hernández-Jiménez, J. Sánchez-Prieto, E. Cano-Pleite, A. Soria-Verdugo, Lateral solids meso-mixing in pseudo-2d fluidized beds by means of tfm simulations. Powder Technol. 334, 183 (2018)

    Article  Google Scholar 

  24. F. Depypere, J. Pieters, K. Dewettinck, Expanded bed height determination in a tapered fluidised bed reactor. J. Food Eng. 67, 353 (2005)

    Article  Google Scholar 

  25. T. Maruyama, H. Sato, Liquid fluidization in conical vessels. Chem. Eng. J. 46, 15 (1991)

    Article  CAS  Google Scholar 

  26. D. Sau, K. Biswal, Computational fluid dynamics and experimental study of the hydrodynamics of a gas–solid tapered fluidized bed. Appl. Math. Model. 35, 2265 (2011)

    Article  MathSciNet  Google Scholar 

  27. S. Agarwal, G. Roy, Packed bed pressure drop and incipient fluidization condition in a conical bed of spherical particles: a mathematical model. Ind. Chem. Eng. (1988)

  28. L. Gan, X. Lu, Q. Wang, Experimental and theoretical study on hydrodynamic characteristics of tapered fluidized beds. Adv. Powder Technol. 25, 824 (2014)

    Article  Google Scholar 

  29. R.H. Jean, L.S. Fan, On the particle terminal velocity in a gas-liquid medium with liquid as the continuous phase. Can. J. Chem. Eng. 65, 881 (1987)

    Article  CAS  Google Scholar 

  30. R. Kaewklum, V.I. Kuprianov, Theoretical and experimental study on hydrodynamic characteristics of fluidization in air–sand conical beds. Chem. Eng. Sci. 63, 1471 (2008)

    Article  CAS  Google Scholar 

  31. M. Khani, Models for prediction of hydrodynamic characteristics of gas–solid tapered and mini-tapered fluidized beds. Powder Technol. 205, 224 (2011)

    Article  CAS  Google Scholar 

  32. A. Kmiec, Equilibrium of forces in fluidized bed—experimental verification. Chem. Eng. J. 23, 133 (1982)

    Article  CAS  Google Scholar 

  33. A. Lucas, J. Arnaldos, J. Casal, L. Puigjaner, Improved equation for the calculation of minimum fluidization velocity. Ind. Eng. Chem. Process. Des. Dev. 25, 426 (1986)

    Article  CAS  Google Scholar 

  34. R. Singh, A. Suryanarayana, G. Roy, Prediction of minimum velocity and minimum bed pressure drop for gas-solid fluidization in conical conduits. Can. J. Chem. Eng. 70, 185 (1992)

    Article  CAS  Google Scholar 

  35. P. Mardanloo, K. Sarafan, A. MolaeiDehkordi, Solids mixing in tapered fluidized beds: experiment and computational fluid dynamics simulation. Ind. Eng. Chem. Res. 62(49), 21464 (2023)

    Article  CAS  Google Scholar 

  36. D. Gidaspow, Y. Seo, B. Ettehadieh, Hydrodynamics of fluidization: Experimental and theoretical bubble sizes in a two-dimensional bed with a jet. Chem. Eng. Commun.Commun. 22, 253 (1983)

    Article  CAS  Google Scholar 

  37. X. Wang, B. **, Y. Wang, C. Hu, Three-dimensional multi-phase simulation of the mixing and segregation of binary particle mixtures in a two-jet spout fluidized bed. Particuology 22, 185 (2015)

    Article  Google Scholar 

  38. K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151 (2001)

    Article  ADS  Google Scholar 

  39. S. Benyahia, M. Syamlal, T. O’Brien, Summary of Mfix Equations (National Energy Technology Laboratory, Morgantown, 2012)

    Google Scholar 

  40. M. Syamlal, The Particle-Particle Drag Term in a Multiparticle Model of Fluidization (EG and G Washington Analytical Services Center Inc, Morgantown, 1987)

    Google Scholar 

  41. W. Du, X. Bao, J. Xu, W. Wei, Computational fluid dynamics (cfd) modeling of spouted bed: Influence of frictional stress, maximum packing limit and coefficient of restitution of particles. Chem. Eng. Sci. 61, 4558 (2006)

    Article  CAS  Google Scholar 

  42. R. Fedors, R. Landel, An empirical method of estimating the void fraction in mixtures of uniform particles of different size. Powder Technol. 23, 225 (1979)

    Article  Google Scholar 

  43. Y. Peng, L. Fan, Hydrodynamic characteristics of fluidization in liquid-solid tapered beds. Chem. Eng. Sci. 52, 2277 (1997)

    Article  CAS  Google Scholar 

  44. Z. Wang, H. Bi, C. Lim, Numerical simulations of hydrodynamic behaviors in conical spouted beds. China Particuol. 4, 194 (2006)

    Article  CAS  Google Scholar 

  45. C. Guenther, M. Syamlal, The effect of numerical diffusion on simulation of isolated bubbles in a gas–solid fluidized bed. Powder Technol. 116, 142 (2001)

    Article  CAS  Google Scholar 

  46. I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(7), (2008)

  47. S. Chiba, H. Tanimoto, H. Kobayashi, T. Chiba, Measurement of solid exchange between the bubble wake and the emulsion phase in a three-dimensional gas-fluidised bed. J. Chem. Eng. Jpn.Jpn. 12, 43 (1979)

    Article  CAS  Google Scholar 

  48. K. Noda, S. Uchida, T. Makino, H. Kamo, Minimum fluidization velocity of binary mixture of particles with large size ratio. Powder Technol. 46, 149 (1986)

    Article  CAS  Google Scholar 

  49. K. Luo, F. Wu, S. Yang, J. Fan, Cfd–dem study of mixing and dispersion behaviors of solid phase in a bubbling fluidized bed. Powder Technol. 274, 482 (2015)

    Article  CAS  Google Scholar 

  50. K. Zhang, H. Zhang, J. Lovick, J. Zhang, B. Zhang, Numerical computation and experimental verification of the jet region in a fluidized bed. Ind. Eng. Chem. Res. 41, 3696 (2002)

    Article  CAS  Google Scholar 

  51. K. Zhang, J. Zhang, B. Zhang, Cfd simulation of jet behaviour and voidage profile in a gas–solid fluidized bed. Int. J. Energy Res. 28, 1065 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The present authors would like to thank Sharif University of Technology (Tehran, Iran) for supporting this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Molaei Dehkordi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari, E., Mardanloo, P., Sarafan, K. et al. Solids Mixing Intensification in Tapered Fluidized Beds with an Inlet Jet: Experimental Validation and CFD Simulation. Korean J. Chem. Eng. 41, 357–374 (2024). https://doi.org/10.1007/s11814-023-00011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-00011-2

Keywords

Navigation