Log in

Unveiling the Performance Symphony of Iron Fluoride Cathodes in Advanced Energy Storage Devices

  • Review Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Increasing the storage capacity of portable electronic storage devices is one example of how energy storage and conversion have recently emerged as key research subjects for addressing social and environmental concerns. Metal fluoride cathodes have recently received a lot of attention as potential components for high-performance lithium batteries. These cathodes have unique electrochemical properties that make them suitable for energy storage applications. The research looks into the electrochemical properties of numerous metal fluorides, including transition metal fluorides and rare earth metal fluorides. The study finishes by emphasising metal fluoride cathode applications in portable electronics, electric cars and grid energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun.Commun. (2020). https://doi.org/10.1038/s41467-020-15355-0

    Article  Google Scholar 

  2. Y. Zhao et al., A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424

    Article  CAS  Google Scholar 

  3. R. Hausbrand, D. Becker, W. Jaegermann, A surface science approach to cathode/electrolyte interfaces in Li-ion batteries: contact properties, charge transfer and reactions. Prog. Solid State Chem. 42(4), 175–183 (2014). https://doi.org/10.1016/j.progsolidstchem.2014.04.010

    Article  CAS  Google Scholar 

  4. U.-H. Kim, N.-Y. Park, G.-T. Park, H. Kim, C.S. Yoon, Y.-K. Sun, High-energy W-doped Li [Ni0.95Co0.04Al0.01]O2 cathodes for next-generation electric vehicles. Energy Storage Mater. 33, 399–407 (2020). https://doi.org/10.1016/j.ensm.2020.08.013

    Article  Google Scholar 

  5. D.P. Abraham, E.P. Roth, R. Kostecki, K. McCarthy, S. MacLaren, D.H. Doughty, Diagnostic examination of thermally abused high-power lithium-ion cells. J. Power Sour. 161(1), 648–657 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.088

    Article  CAS  Google Scholar 

  6. X. Dong, Z. Guo, Z. Guo, Y. Wang, Y. **a, Organic batteries operated at −70°C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017

    Article  CAS  Google Scholar 

  7. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0. Mater. Res. Bull. 15(6), 783–789 (1980). https://doi.org/10.1016/0025-5408(80)90012-4

    Article  CAS  Google Scholar 

  8. Q. Huang et al., Fading mechanisms and voltage hysteresis in FeF2–NiF2 solid solution cathodes for lithium and lithium-ion batteries. Small 15(6), 1804670 (2019). https://doi.org/10.1002/smll.201804670

    Article  CAS  Google Scholar 

  9. L. Li et al., Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 138(8), 2838–2848 (2016). https://doi.org/10.1021/jacs.6b00061

    Article  CAS  PubMed  Google Scholar 

  10. Y. Inaguma, M. Oyanagi, K. Ueda, Exploratory synthesis for complex metal fluorides using solid-state fluorine sources. Inorg. Chem.. Chem. 61(3), 1728–1734 (2022). https://doi.org/10.1021/acs.inorgchem.1c03617

    Article  CAS  Google Scholar 

  11. G. Qi, J. Hu, M. Balogh, L. Wang, D. Darbar, W. Li, Impact of Ni content on the electrochemical performance of the Co-free, Li and Mn-rich layered cathode materials. Electrochem (2023). https://doi.org/10.3390/electrochem4010002

    Article  Google Scholar 

  12. J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  13. M. Kim, Z. Yang, S.E. Trask, I. Bloom, Understanding the effect of cathode composition on the interface and crosstalk in NMC/Si full cells. ACS Appl. Mater. Interfaces 14(13), 15103–15111 (2022). https://doi.org/10.1021/acsami.1c22364

    Article  CAS  PubMed  Google Scholar 

  14. Z. Chen, Q. Zhang, Q. Liang, Carbon-coatings improve performance of Li-ion battery. Nanomaterials (Basel) 12(11), 1936 (2022). https://doi.org/10.3390/nano12111936

    Article  CAS  PubMed  Google Scholar 

  15. J.-P. Jones, M.C. Smart, F.C. Krause, R.V. Bugga, The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells. J. Electrochem. Soc. 167(2), 020536 (2020). https://doi.org/10.1149/1945-7111/ab6bc2

    Article  CAS  Google Scholar 

  16. A.K. Stephan, A pathway to understand NMC cathodes. Joule 4(8), 1632–1633 (2020). https://doi.org/10.1016/j.joule.2020.08.004

    Article  Google Scholar 

  17. D. Ma, R. Zhang, X. Hu, Y. Chen et al., Insights into the electrochemical performance of metal fluoride cathodes for lithium batteries. Energy Mater. (2022). https://doi.org/10.20517/energymater.2022.23

    Article  Google Scholar 

  18. P. Teichert, G.G. Eshetu, H. Jahnke, E. Figgemeier, Degradation and aging routes of Ni-rich cathode based Li-ion batteries. Batteries (2020). https://doi.org/10.3390/batteries6010008

    Article  Google Scholar 

  19. G. Zhang, S. Ge, T. Xu, X.-G. Yang, H. Tian, C.-Y. Wang, Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. Electrochim. Acta 218, 149–155 (2016). https://doi.org/10.1016/j.electacta.2016.09.117

    Article  CAS  Google Scholar 

  20. A. Belgibayeva et al., Lithium-ion batteries for low-temperature applications: limiting factors and solutions. J. Power Sour. 557, 232550 (2023). https://doi.org/10.1016/j.jpowsour.2022.232550

    Article  CAS  Google Scholar 

  21. F. Schipper et al., Study of cathode materials for lithium-ion batteries: recent progress and new challenges. Inorganics (2017). https://doi.org/10.3390/inorganics5020032

    Article  Google Scholar 

  22. W. Ji et al., Building thermally stable Li-ion batteries using a temperature-responsive cathode. J. Mater. Chem. A 4(29), 11239–11246 (2016). https://doi.org/10.1039/C6TA03407A

    Article  CAS  Google Scholar 

  23. J. Meng et al., Fluorinated electrode materials for high-energy batteries. Matter 6(6), 1685–1716 (2023). https://doi.org/10.1016/j.matt.2023.03.032

    Article  CAS  Google Scholar 

  24. M.S. Anantha, D. Anarghya, C. Hu, N. Reddy, K. Venkatesh, H.B. Muralidhara, Enhancing the electrochemical and cyclic performance of IRFBs through electrode modification using novel MnO2@CeO2 composite. J. Mater. Sci. Mater. Electron. 31(18), 15286–15295 (2020). https://doi.org/10.1007/s10854-020-04093-0

    Article  CAS  Google Scholar 

  25. X. Hu, Y. Zheng, D.A. Howey, H. Perez, A. Foley, M. Pecht, Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives. Prog. Energy Combust. Sci. 77, 100806 (2020). https://doi.org/10.1016/j.pecs.2019.100806

    Article  Google Scholar 

  26. X. Fan et al., High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun.Commun. (2018). https://doi.org/10.1038/s41467-018-04476-2

    Article  Google Scholar 

  27. F. Zhang et al., Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun.Commun. (2020). https://doi.org/10.1038/s41467-020-16824-2

    Article  Google Scholar 

  28. K. Xu, Li-ion battery electrolytes. Nat. Energy (2021). https://doi.org/10.1038/s41560-021-00841-6

    Article  Google Scholar 

  29. Y. Tang et al., Synthesis of iron-fluoride materials with controlled nanostructures and composition through a template-free solvothermal route for lithium ion batteries. New J. Chem. 42(11), 9091–9097 (2018). https://doi.org/10.1039/C8NJ00932E

    Article  CAS  Google Scholar 

  30. J. Tan et al., Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries. J. Power. Sources 251, 75–84 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.004

    Article  CAS  Google Scholar 

  31. Q. Zhang, C. Sun, L. Fan, N. Zhang, K. Sun, Iron fluoride vertical nanosheets array modified with graphene quantum dots as long-life cathode for lithium ion batteries. Chem. Eng. J. 371, 245–251 (2019). https://doi.org/10.1016/j.cej.2019.04.073

    Article  CAS  Google Scholar 

  32. L. Zhang, S. Ji, L. Yu, X. Xu, J. Liu, Amorphous FeF3/C nanocomposite cathode derived from metal–organic frameworks for sodium ion batteries. RSC Adv. 7(39), 24004–24010 (2017). https://doi.org/10.1039/C7RA03592F

    Article  CAS  Google Scholar 

  33. X. Wang et al., Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage. Chem. Eng. J. 428, 130990 (2022). https://doi.org/10.1016/j.cej.2021.130990

    Article  CAS  Google Scholar 

  34. H. **a et al., Deep cycling for high-capacity li-ion batteries. Adv. Mater. 33(10), 2004998 (2021). https://doi.org/10.1002/adma.202004998

    Article  CAS  Google Scholar 

  35. L.-X. Yuan et al., Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4(2), 269–284 (2011). https://doi.org/10.1039/C0EE00029A

    Article  CAS  Google Scholar 

  36. S. Okada, M. Ueno, Y. Uebou, J. Yamaki, Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J. Power. Sources 146(1), 565–569 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.149

    Article  CAS  Google Scholar 

  37. Z. Tong, B. Bazri, S.-F. Hu, R.-S. Liu, Interfacial chemistry in anode-free batteries: challenges and strategies. J. Mater. Chem. A 9(12), 7396–7406 (2021). https://doi.org/10.1039/D1TA00419K

    Article  CAS  Google Scholar 

  38. R. Zhang et al., Compositionally complex do** for zero-strain zero-cobalt layered cathodes. Nature (2022). https://doi.org/10.1038/s41586-022-05115-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. X. Dong et al., Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior. Adv. Sci. 7(14), 2000196 (2020). https://doi.org/10.1002/advs.202000196

    Article  CAS  Google Scholar 

  40. J. Langdon, A. Manthiram, Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Adv. Mater. 34(41), 2205188 (2022). https://doi.org/10.1002/adma.202205188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful for RV College of engineering for providing infrastructure to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Vishnumurthy.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhivyadharshini, Raj, S.S., Arpita, B.J. et al. Unveiling the Performance Symphony of Iron Fluoride Cathodes in Advanced Energy Storage Devices. Korean J. Chem. Eng. 41, 53–72 (2024). https://doi.org/10.1007/s11814-023-00008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-00008-x

Keywords

Navigation