Log in

Breakdown of passivation for zinc-antimony alloy in alkaline batteries verification; galvanostatic, impedance spectra, and charge-discharge techniques

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The passivation of pure zinc surface can be considered a problem of Zn utilization as an anode in alkaline batteries due to its small capacity. Therefore, to improve the discharge capacity of the Zn anode, minor Sb alloying with Zn was investigated. The impact of trace Sb alloyed with Zn on the passivity and the breakdown of the colloidal passive film on the surface was studied in concentrated KOH solution utilizing galvanostatic, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements at the passivated area. The galvanostatic data show that the required time of passivation (tpass.) is greater with increasing small Sb content in the alloy. The obtained results from electrochemical impedance spectroscopy (EIS) reveal that magnitudes of both resistivities of charge transfer (Rct.) and the impedance of Warburg (Zw) decrease, while the magnitude of capacitance of double layer (Cdl.) increases gradually with the increase in addition of small Sb to zinc metal. The evaluated data from the charging-discharging process show that the greatest value of potential height (ΔV) is for Zn-0.5%Sb alloy. Therefore, 0.5%Sb alloying with Zn can increase energy efficiency to a large extent than Zn and alloy II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yanguang and D. Hongjie, Chem. Soc. Rev., 43, 5257 (2014).

    Article  Google Scholar 

  2. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee and J. Cho, Adv. Energy Mater., 1, 34 (2011).

    Article  CAS  Google Scholar 

  3. H. Ma and B. Wang, RSC Adv., 4, 46084 (2014).

    Article  CAS  Google Scholar 

  4. M. Prabu, P. Ramakrishnan and S. Shahmugam, Electrochem. Commun., 41, 59 (2014).

    Article  CAS  Google Scholar 

  5. G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang and F. Wei, Small, 11, 2251 (2014).

    Article  Google Scholar 

  6. Z. Shao, W. Zhang, D. An, G. Zhang and Y. Wang, RSC Adv., 5, 97508 (2015).

    Article  CAS  Google Scholar 

  7. T. M. Bawazeer, A. M. El Defrawy and A. A. El-Shafei, Colloids Surf. A, 520, 694 (2017).

    Article  CAS  Google Scholar 

  8. A. Singh, K. R. Ansari and M. A. Quraishi, Colloids Surf. A, 607, 125465 (2020).

    Article  CAS  Google Scholar 

  9. J. Huang and Z. Yang, RSC Adv., 5, 33814 (2015).

    Article  CAS  Google Scholar 

  10. J. Drillet, M. Adam, S. Barg, A. Herter, D. Koch, V Schmidt and M. Wilhelm, ECS Trans., 28, 13 (2010).

    Article  CAS  Google Scholar 

  11. P. Bonnick and J. Dahn, J. Electrochem. Soc., 159, A981 (2012).

    Article  CAS  Google Scholar 

  12. W. Hong, Z. Jia and B. Wang, J. Appl. Electrochem., 46, 1085 (2016).

    Article  CAS  Google Scholar 

  13. Y. Tian, Y. An, C. Liu, S. **ong, J. Feng and Y. Qian, Energy Storage. Mater., 41, 343 (2021).

    Article  Google Scholar 

  14. C. Zhang, J. M. Wang, L. Zhang, J. Q. Zhang and C. N. Cao, J. Appl. Electrochem., 31, 1049 (2001).

    Article  CAS  Google Scholar 

  15. Y. Yu, Y. Zuo, Z. Zhang, L. Wu, C. Ning and C. Zuo, Coatings, 9, 692 (2019).

    Article  CAS  Google Scholar 

  16. C. W. Lee K. Sathiyanarayanan, S. W. Eom and M. S. Yun, J. Power Sources, 160, 1436 (2006).

    Article  CAS  Google Scholar 

  17. Y. N. Jo, K. Prasanna, S. H. Kang, P. R. IIango, H. S. Kim, W. S. Eom and C. W. Lee, J. Ind. Eng. Chem., 53, 247 (2017).

    Article  CAS  Google Scholar 

  18. W. Gan, D. Zhou, L. Zhou, Z. Zhang and J. Zhao, Electrochim. Acta, 182, 430 (2015).

    Article  CAS  Google Scholar 

  19. M. Hilder, B. W. Jensen and N. Clark, Electrochim. Acta, 69, 308 (2012).

    Article  CAS  Google Scholar 

  20. R. M. Wittman, R. L. Sacci and T. A. Zawodzinski, J. Power Sources, 438, 227034 (2019).

    Article  CAS  Google Scholar 

  21. J. Stamm, A. Varzi, A. Latz and B. Horstmann, J. Power Sources, 360, 136 (2017).

    Article  CAS  Google Scholar 

  22. M. Elrouby, H. A. S. Shilkamy and A. Elsayed, J. Alloys Compd., 854, 157285 (2021).

    Article  CAS  Google Scholar 

  23. A. Elsayed, H. A. S. Shilkamy and M. Elrouby, J. Solid State Electrochem., 25, 2161 (2021).

    Article  CAS  Google Scholar 

  24. M. Elrouby, H. A. E. Shilkamy and A. E. R. Elsayed, J. Solid State Electrochem., 25, 2175 (2021).

    Article  CAS  Google Scholar 

  25. A. ElSayed, H. A. S. Shilkamy and M. Elrouby, Int. J. Hydrogen Energy, 46, 31239 (2021).

    Article  CAS  Google Scholar 

  26. A. ElSayed, A. M. Sahker and H. M. Abd El Lateef, Corrosion Sci., 52, 72 (2010).

    Article  CAS  Google Scholar 

  27. A. ElSayed, H. S. Mohran and H. M. Abd El Lateef, Corrosion Sci., 52, 1976 (2010).

    Article  CAS  Google Scholar 

  28. H. S. Mohran, A. ElSayed and H. M. Abd El Lateef, Solid State Electrochem., 13, 1147 (2009).

    Article  CAS  Google Scholar 

  29. A. ElSayed, A. M. Shaker and H. G. ElKareem, Bull. Chem. Soc. Jpn., 76, 1527 (2003).

    Article  Google Scholar 

  30. H. M. Abd El Lateef, K. Shalabi, A. R. Sayed, S.M. Gomha and E. M. Bakir, J. Ind. Eng. Chem., 105, 238 (2022).

    Article  CAS  Google Scholar 

  31. E. E. Abdel Aal, Corrosion Sci., 45, 641 (2003).

    Article  CAS  Google Scholar 

  32. E. E. A. El-Aal, Corrosion, 55, 582 (1999).

    Article  Google Scholar 

  33. M. Bockelmann, L. Reining, U. Kunz and T. Turekab, Electrochim. Acta, 237, 276 (2017).

    Article  CAS  Google Scholar 

  34. A. Chiba, S. Tanaka, W. Inami, A. Sugita, K. Takada and Y. Kawata, Opt. Mater., 35, 1887 (2013).

    Article  CAS  Google Scholar 

  35. E. E. Abd El-Aal, Corrosion Sci., 45, 759 (2003).

    Article  CAS  Google Scholar 

  36. D. Gileket, A. Brzózka, K. E. Hnida and G. D. Sulka, Electrochim. Acta, 302, 352 (2019).

    Article  Google Scholar 

  37. A. ElSayed, H. S. Mohran and H. M. Abd El Lateef, Corrosion Sci., 51, 2675 (2009).

    Article  CAS  Google Scholar 

  38. A. R. El-Sayed, H. S. Mohran and H. M. Abd El-Lateef, J. Solid State Electrochem., 13, 1279 (2009).

    Article  Google Scholar 

  39. E. Bayol, A. A. Gurten, M. Dursun and K. Kayakirilman, Acta Phys. Chim. Sin., 24, 2236 (2008).

    Article  CAS  Google Scholar 

  40. H. M. A. ElLateef, L. I. Aliyeva, V. M. Abbasov and T. I. Ismayilov, Adv. Appl. Sci. Res., 3, 1185 (2012).

    Google Scholar 

  41. H. M. A. EL-Lateef, A. R. ELSayed and H. S. Mohran, J. Trans. Nonferrous Met. Soc. China, 25, 3152 (2015).

    Article  Google Scholar 

  42. E. E. A. El-Aal, Corrosion Sci., 50, 41 (2008).

    Article  Google Scholar 

  43. A. R. El-Sayed and H. M. El-Lateef, Bull. Mater. Sci., 38, 1 (2015).

    Article  Google Scholar 

  44. A. O. Alnajjar, H. M. Abd El Lateef, M. M. Khalaf and I. M. A. Mohammed, Constr. Build. Mater., 317, 25918 (2022).

    Article  Google Scholar 

  45. X. Zeng, Z. Yang, J. Long, L. Chen, H. Qin and M. Fan, Ionics, 25, 1223 (2019).

    Article  CAS  Google Scholar 

  46. A. R. El-Sayed, H. S. Mohran and H. M. A. El-Lateef, J. Power Sources, 196, 6573 (2011).

    Article  CAS  Google Scholar 

  47. L. Wang, Y. Liu, X. Chen and Z. Yang, Electrochem. Soc., 164, A3692 (2017).

    Article  CAS  Google Scholar 

  48. J. He, Y. Wei, T. Zhai and H. Li, Mater. Chem. Front., 2, 437 (2018).

    Article  CAS  Google Scholar 

  49. A. H. Abdalla, C. I. Oseghale, J. O. G. Posada and P. J. Hall, IET Renew. Power Gener., 10, 1529 (2016).

    Article  Google Scholar 

  50. S. S. A. El-Rehim, H. H. Hassan and A. Mohammed, Appl. Surf. Sci., 187, 279 (2002).

    Article  Google Scholar 

  51. M. Mouanga and P. Berçot, Corrosion Sci., 52, 3993 (2010).

    Article  CAS  Google Scholar 

  52. P. Gu, M. Zheng, Q. Zhao, X. **ao, H. Xue and H. Pang, J. Mater. Chem. A, 5, 7651 (2017).

    Article  CAS  Google Scholar 

  53. X. Chen, L. Wang, H. Qin and Z. Yang, Ionics, 25, 1715 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmoud Elrouby or Abd El-Rahman El-Sayed.

Additional information

Conflict of Interest

The authors declared that they have no conflict of interest

Availability of Data And Materials

All data generated or analysed during this study are included in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elrouby, M., Shilkamy, H.A.ES. & El-Sayed, A.ER. Breakdown of passivation for zinc-antimony alloy in alkaline batteries verification; galvanostatic, impedance spectra, and charge-discharge techniques. Korean J. Chem. Eng. 40, 572–583 (2023). https://doi.org/10.1007/s11814-022-1353-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1353-3

Keywords

Navigation