Log in

Patterning potential of the terminal system in the Drosophila embryo

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Segmentation of the Drosophila embryo is initiated by localized maternal signals. In this context, anteriorly localized Bicoid activates the gap genes in the anterior half of the embryo while posteriorly localized Nanos represses the translation of maternal hunchback mRNA to pattern the posterior half. The non-segmented termini are patterned by the localized activation of mitogen-activated protein kinase. Yet, the spatial extent of the terminal patterning system in regulating gap genes beyond poles remains unknown. We investigated the patterning potential of the terminal system using mutagenized embryos that lack both the anterior and the posterior maternal signaling systems. Using a combination of quantitative imaging and mathematical modeling, we analyzed the spatial patterns of gap genes in the early Drosophila embryo. We found that this mutant embryo develops symmetric cuticle patterns along the anteroposterior axis with two segments on each side. Notably, the terminal system can affect the expression of Krüppel in the torso region. Our mathematical model recapitulates the experimental data and reveals the potential bistability in the terminal patterning system. Collectively, our study suggests that the terminal system can act as a long-range inductive signal and establish multiple gene expression boundaries along the anteroposterior axis of the develo** embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OreR:

Oregon R

AP:

Anteroposterior

Bcd:

Bicoid

Hb:

Hunchback

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

dpERK:

Diphosphorylated ERK

Tor:

Torso

Trk:

Trunk

Tll:

Tailless

Hkb:

Huckebein

Cic:

Capicua

Gro:

Groucho

FISH:

Fluorescent in situ hybridization

PBS:

Phosphate-buffered saline

PBST:

Phosphate buffered saline with 0.02% Triton X-100

DIG:

Digoxigenin

BIO:

Biotin

FITC:

Fluorescein

WBR:

Western blocking reagent

BSA:

Bovine serum albumin

NGS:

Normal goat serum

Kr:

Krüppel

Kni:

Knirps

Gt:

Giant

GOF:

Gain-of-function

Reference

  1. J. Jaeger, Manu and J. Reinitz, Curr. Opin Genet. Dev., 22, 533 (2012).

    Article  CAS  Google Scholar 

  2. E. Wieschaus, Curr. Top Dev. Biol., 117, 567 (2016).

    Article  Google Scholar 

  3. J. Casanova and G. Struhl, Genes Dev., 3, 2025 (1989).

    Article  CAS  Google Scholar 

  4. W. Driever and C. Nusslein-Volhard, Cell, 54, 95 (1988).

    Article  CAS  Google Scholar 

  5. J. Jaeger, Cell Mol. Life Sci., 68, 243 (2011).

    Article  CAS  Google Scholar 

  6. D. St Johnston and C. Nusslein-Volhard, Cell, 68, 201 (1992).

    Article  CAS  Google Scholar 

  7. M. Akam, Development, 101, 1 (1987).

    Article  CAS  Google Scholar 

  8. A. Ephrussi and D. St Johnston, Cell, 116, 143 (2004).

    Article  CAS  Google Scholar 

  9. J. Dubnau and G. Struhl, Nature, 379, 694 (1996).

    Article  CAS  Google Scholar 

  10. R. Rivera-Pomar, D. Niessing, U. Schmidt-Ott, W. J. Gehring and H. Jackle, Nature, 379, 746 (1996).

    Article  CAS  Google Scholar 

  11. E. De Keuckelaere, P. Hulpiau, Y. Saeys, G. Berx and F. van Roy, Cell Mol. Life Sci., 75, 1929 (2018).

    Article  CAS  Google Scholar 

  12. R. Lehmann and C. Nusslein-Volhard, Development, 112, 679 (1991).

    Article  CAS  Google Scholar 

  13. C. Wreden, A. C. Verrotti, J. A. Schisa, M. E. Lieberfarb and S. Strickland, Development, 124, 3015 (1997).

    Article  CAS  Google Scholar 

  14. M. Furriols and J. Casanova, Embo J., 22, 1947 (2003).

    Article  CAS  Google Scholar 

  15. C. M. Smits and S. Y. Shvartsman, Curr. Top Dev. Biol., 137, 193 (2020).

    Article  CAS  Google Scholar 

  16. A. Mineo, M. Furriols and J. Casanova, Open Biol, 8, 180180 (2018).

    Article  CAS  Google Scholar 

  17. E. Cinnamon, A. Helman, R. Ben-Haroush Schyr, A. Orian, G. Jimenez and Z. Paroush, Development, 135, 829 (2008).

    Article  CAS  Google Scholar 

  18. G. Jimenez, A. Guichet, A. Ephrussi and J. Casanova, Genes Dev., 14, 224 (2000).

    Article  CAS  Google Scholar 

  19. Y. Kim, M. Coppey, R. Grossman, L. Ajuria, G. Jimenez, Z. Paroush and S. Y. Shvartsman, Curr. Biol., 20, 446 (2010).

    Article  CAS  Google Scholar 

  20. H. E. Johnson, Y. Goyal, N. L. Pannucci, T. Schupbach, S. Y. Shvartsman and J. E. Toettcher, Dev. Cell, 40, 185 (2017).

    Article  CAS  Google Scholar 

  21. M. Coppey, A. N. Boettiger, A. M. Berezhkovskii and S. Y. Shvartsman, Curr. Biol., 18, 915 (2008).

    Article  CAS  Google Scholar 

  22. Y. Kim, A. Iagovitina, K. Ishihara, K. M. Fitzgerald, B. Deplancke, D. Papatsenko and S. Y. Shvartsman, Chaos, 23, 025105 (2013).

    Article  Google Scholar 

  23. M. Ashyraliyev, K. Siggens, H. Janssens, J. Blom, A. Akam and J. Jaeger, PLoS Comput. Biol., 5, e1000548 (2009).

    Article  Google Scholar 

  24. T. J. Perkins, J. Jaeger, J. Reinitz and L. Glass, PLoS Comput. Biol., 2, e51 (2006).

    Article  Google Scholar 

  25. Y. Kim, M. J. Andreu, B. Lim, K. Chung, M. Terayama, G. Jimenez, C. A. Berg, H. Lu and S. Y. Shvartsman, Dev. Cell, 20, 880 (2011).

    Article  CAS  Google Scholar 

  26. Y. Kim, Z. Paroush, K. Nairz, E. Hafen, G. Jimenez and S. Y. Shvartsman, Mol. Syst. Biol., 7, 467 (2011).

    Article  Google Scholar 

  27. D. Papatsenko and M. S. Levine, Proc. Natl. Acad Sci. USA, 105, 2901 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Eric Wieschaus for providing bcd hb nos mutant flies and for the helpful discussions. K. M. O. was supported by thesis research funds by Princeton University. Y.K. was supported by the internal fund of Electronics and Telecommunications Research Institute (ETRI) [22RB1100, Exploratory and Strategic Research of ETRI-KAIST ICT Future Technology (Grant number: N05220126)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoosik Kim.

Additional information

Author Contribution

K.M.O., S.Y.S., and Y.K. designed the experiments, K.M.O. and Y.K. performed the experiments. K.L., K.M.O., and J.K., performed image analysis. K.L., K.M.O., and Y.K. wrote the paper. All authors analyzed the data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., O’Neill, K.M., Ku, J. et al. Patterning potential of the terminal system in the Drosophila embryo. Korean J. Chem. Eng. 40, 436–444 (2023). https://doi.org/10.1007/s11814-022-1298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1298-6

Keywords

Navigation