Log in

Downstream process development of biobutanol using deep eutectic solvent

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biobutanol is produced from lignocellulose fermentation. Owing to the abundance of this feedstock and the similarities between the properties of biobutanol and gasoline, biobutanol represents a promising alternative to current crude-oil-based automotive fuel. Environmentally friendly recovery of biobutanol from the fermentation products is essential for achieving carbon-neutral production. Because extraction substantially lowers the energy demand for distillation, an eco-friendly deep eutectic solvent (DES) was applied for biobutanol extraction here, and the non-random two-liquid (NRTL) parameters that were compatible with the process design program were derived using experimental measurements and molecular simulations. For the liquid-liquid equilibrium (LLE) parameter estimation, a non-iterative procedure was introduced with a suitable arrangement of binary parameters for the DES. Compared to previous studies, the process design results indicate a marked reduction in energy consumption for the near-complete recovery of high-purity biobutanol, requiring a comparable investment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

binary interaction parameter [-]

b:

binary interaction parameter [-]

G:

Gibbs free energy or defined in Eq. (3) [Jmol−1]

K:

equilibrium constant [-]

L:

liquid fraction [-]

l :

component liquid fraction [-]

N:

number of components or phases [-]

P:

pressure [Pa]

R:

ideal gas constant [Jmol−1K−1]

T:

absolute temperature [K]

x:

liquid composition [-]

z:

feed composition [-]

α :

non-randomness parameter [-]

γ :

activity coefficient [-]

τ :

defined in Eq. (2) [-]

φ :

fugacity coefficient [-]

I:

liquid I

II:

liquid II

T:

total system

c:

component number

i:

component i

j:

component j

k:

component k

l:

component l

m:

component m

p:

phase number

References

  1. D. Kushwaha, N. Srivastava, I. Mishra, S. N. Upadhyay and P. K. Mishra, Rev. Chem. Eng., 35, 475 (2019).

    Article  Google Scholar 

  2. G. Fomo, T. N. Madzimbamuto and T. V. Ojumu, Sustainability, 12, 5244 (2020).

    Article  Google Scholar 

  3. K. A. Baritugo, J. N. Son, Y. J. Sohn, H. T. Kim, J. C. Joo, J. I. Choi and S. J. Park, Korean J. Chem. Eng., 38, 1291 (2021).

    Article  Google Scholar 

  4. E. B. D’Alessandro, A. T. Soares, R. G. Lopes, R. B. Derner and N. R. Antoniosi, Chem. Eng. Commun., 208, 965 (2021).

    Article  Google Scholar 

  5. S. Kang, M. J. Realff, Y. H. Yuan, R. Chance and J. H. Lee, Korean J. Chem. Eng., 39, 1524 (2022).

    Article  Google Scholar 

  6. R. Verma and T. Banerjee, Glob. Chall., 3, 1900024 (2019).

    Article  Google Scholar 

  7. R. Verma, P. K. Naik, I. Diaz and T. Banerjee, Fluid Phase Equilibr., 533, 112949 (2021).

    Article  Google Scholar 

  8. Y. Peng, X. Lu, B. Liu and J. Zhu, Fluid Phase Equilibr., 448, 128 (2017).

    Article  Google Scholar 

  9. G. A. L. Souza, L. Y. A. Silva and P. F. M. Martinez, J. Chem. Thermodyn., 158, 106444 (2021).

    Article  Google Scholar 

  10. H. Amiri and K. Karimi, Bioresour. Technol., 270, 702 (2018).

    Article  Google Scholar 

  11. R. N. Menchavez and S. H. Ha, Korean J. Chem. Eng., 36, 909 (2019).

    Article  Google Scholar 

  12. H. Amiri, K. Karimi and H. Zilouei, Bioresour. Technol., 152, 450 (2014).

    Article  Google Scholar 

  13. A. Calhan, S. Deniz, J. Romero and A. Hasanoglu, Korean J. Chem. Eng., 36, 1489 (2019).

    Article  Google Scholar 

  14. P. Ibarra-Gonzalez, L. P. Christensen and B. G. Rong, Chem. Eng. Commun., 209, 529 (2021).

    Article  Google Scholar 

  15. B. Bharathiraja, J. Jayamuthunagai, T. Sudharsanaa, A. Bharghavi, R. Praveenkumar, M. Chakravarthy and D. Yuvaraj, Renew. Sust. Energy Rev., 68, 788 (2017).

    Article  Google Scholar 

  16. H. W. Oh, S. C. Lee, H. C. Woo and Y. H. Kim, Chem. Eng. Technol., 44, 2316 (2021).

    Article  Google Scholar 

  17. K. Paduszyński, M. Więckowski, M. Okuniewski and U. Domańska, J. Mol. Liq., 286, 110819 (2019).

    Article  Google Scholar 

  18. P. F. Arce, D.H.P. Guimaraes and L.R. de Aguirre, Chem. Eng. Commun., 206, 1273 (2021).

    Article  Google Scholar 

  19. H. Renon and J. M. Prausnitz, AIChE J., 14, 135 (1968).

    Article  Google Scholar 

  20. D. Jha, M. B. Haider, R. Kumar and M. S. Balathanigaimani, Chem. Eng. Res. Des., 111, 218 (2016).

    Article  Google Scholar 

  21. L. H. Wu, L. Wu, Y. S. Liu, X. Q. Guo, Y. F. Hu, R. Cao, X. Y. Pu and X. Wang, Chem. Eng. Res. Des., 129, 197 (2018).

    Article  Google Scholar 

  22. H. C. Woo and Y. H. Kim, AIChE J., 65, e16665 (2019).

    Article  Google Scholar 

  23. X. Shang, S. Ma, Q. Pan, J. Li, Y. Sun, K. Ji and L. Sun, Chem. Eng. Res. Des., 148, 298 (2019).

    Article  Google Scholar 

  24. S. H. Saravi, A. Ravichandran, R. Khare and C. C. Chen, AIChE J., 65, 1315 (2019).

    Article  Google Scholar 

  25. S. Tanveer and C. C. Chen, AIChE J., 66, (2020).

  26. N. R. Mirza, N. J. Nicholas, Y. Wu, S. Kentish and G. W. Stevens, J. Chem. Eng. Data, 60, 1844 (2015).

    Article  Google Scholar 

  27. H. Dongmin and C. Yanhong, Chem. Eng. Process., 131, 203 (2018).

    Article  Google Scholar 

  28. G. Shu, Y. Tan, L. Cui, Y. Zhang and L. Zhang, J. Chem. Eng. Data, 65, 3029 (2020).

    Article  Google Scholar 

  29. M. L. Michelsen, Fluid Phase Equilibr., 9, 21 (1982).

    Article  Google Scholar 

  30. A. Marcilla, J. A. Reyes-Labarta and M. M. Olaya, Fluid Phase Equilibr., 433, 243 (2017).

    Article  Google Scholar 

  31. Z. Li, K. A. Mumford, K. H. Smith, J. Chen, Y. Wang and G. W. Stevens, Ind. Eng. Chem. Res., 55, 2852 (2016).

    Article  Google Scholar 

  32. F. Denes, P. Lang and M. Lang-Lazi, IChemE Symposium Series. Inst. Chem. Eng., London., 152, 877 (2006).

    Google Scholar 

  33. D. Dubbeldam, S. Calero, D. E. Ellis and R. Q. Snurr, raspa_instruction.pdf https://github.com/numat/RASPA2/blob/master/Docs/raspa.pdf (2015). (accessed on April 15, 2022).

  34. D. Dubbeldam, S. Calero, D. E. Ellis and R. Q. Snurr, Mol. Simul., 42, 81 (2016).

    Article  Google Scholar 

  35. C. H. Seo and Y. H. Kim, Sep. Purif. Technol., 209, 1 (2019).

    Article  Google Scholar 

  36. S. C. Lee, H. C. Woo and Y. H. Kim, Chem. Eng. Process., 160, 108286 (2021).

    Article  Google Scholar 

  37. S. C. Lee, H. C. Woo and Y. H. Kim, Fuel, 310, 122393 (2022).

    Article  Google Scholar 

  38. N. R. Rodríguez, A. S. B. González, P. M. A. Tijssen and M. C. Kroon, Fluid Phase Equilibr., 385, 72 (2015).

    Article  Google Scholar 

  39. I. Patrascu, C. S. Bildea and A. A. Kiss, Sep. Purif. Technol., 177, 49 (2017).

    Article  Google Scholar 

  40. Aspentech, Aspen Technology, Inc., Bedford. MA (2015).

  41. J. M. Douglas, Conceptual design of chemical processes, McGraw-Hill, New York (1988).

    Google Scholar 

  42. I. C. Kemp, Pinch analysis and process integration, 2nd ed., Butterworth-Heinemann, Burlington, MA (2007).

    Google Scholar 

  43. R. Turton, R. C. Baille, W. B. Whiting and J. A. Shaeiwitz, Analysis, synthesis, and design of chemical processes, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey (2003).

    Google Scholar 

  44. Z. Olujic, L. Sun, A. de Rijke and P. J. Jansens, Energy, 31, 3083 (2006).

    Article  Google Scholar 

  45. Y. H. Kim, Energy, 70, 435 (2014).

    Article  Google Scholar 

  46. A. Aden, M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton and J. Lucas, National Renewable Energy Laboratory, Golden, CO (2002).

  47. Q. Yan, G. Ma and W. Wang, J. Phys.: Conf. Ser., 2076, 012037 (2021).

    Google Scholar 

  48. Sandvik, Sandvik AB, Sandviken, Sweden, https://www.materials.sandvik/en/materials-center/corrosion-tables/fatty-acids/ (2022).

  49. H. Ayaz, V. Chinnasamy and H. Cho, Materials, 14, 7418 (2021).

    Article  Google Scholar 

  50. M. Aneke and J. Gorgens, Fuel, 150, 583 (2015).

    Article  Google Scholar 

  51. C. A. Contreras-Vargas, F. I. Gomez-Castro, E. Sanchez-Ramirez, J. G. Segovia-Hernandez, R. Morales-Rodriguez and Z. Gamino-Arroyo, Chem. Eng. Technol., 42, 1088 (2019).

    Article  Google Scholar 

  52. K. Kraemer, A. Harwardt, R. Bronneberg and W. Marquardt, Comput. Chem. Eng., 35, 949 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Yongchul G. Chung of Pusan National University for advising the RASPA implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Han Kim.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.C., Park, J.W. & Kim, Y.H. Downstream process development of biobutanol using deep eutectic solvent. Korean J. Chem. Eng. 40, 205–214 (2023). https://doi.org/10.1007/s11814-022-1265-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1265-2

Keywords

Navigation