Log in

Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified biochar aerogel

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As emerging contaminants used for treating various tract infections, fluoroquinolones (such as enoxacin, ofloxacin, etc.) enter water bodies via point-source discharges of wastewater treatment plants and many of them raise environmental and health concerns. Herein, a novel adsorbent, derived from a useful renewable low-cost grapefruit peel, was prepared to investigate the adsorption behavior of fluoroquinolone antibiotics (enoxacin and ofloxacin). The obtained adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and thermo-gravimetric analysis and differential scanning calorimetry (TG-DSC). Further, the equilibrium sorption of the adsorption process was analyzed with isotherm models and kinetic models. Under optimal adsorption conditions, equilibrium data conformed to the Elovich model, and the kinetics of adsorption was fitted well with Redlich-Peterson model. Combined with thermodynamic analysis, electrostatic interaction, hydrogen bond, π-π stacking interaction were the possible adsorption mechanisms for both fluoroquinolone antibiotics onto the novel adsorbent. This work explored a promising adsorbent for the elimination of fluoroquinolone antibiotics in environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Nguyen, Q. M. Truong, C. W. Chen, W. H. Chen and C. D. Dong, Bioresour. Technol., 351, 127043 (2022).

    Article  Google Scholar 

  2. M. Stylianou, A. Christou, C. Michael, A. Agapiou, P. Papanastasiou and D. Fatta-Kassinos, J. Environ. Chem. Eng., 9, 105868 (2021).

    Article  Google Scholar 

  3. I. Alacabey, Molecules, 27, 1380 (2022).

    Article  Google Scholar 

  4. X. Cao, Z. Meng, E. Song, X. Sun, X. Hu, L. Wenbin, Z. Liu, S. Gao and B. Song, Chemosphere, 299, 134414 (2022).

    Article  Google Scholar 

  5. H. Wang, X. Lou, Q. Hu and T. Sun, J. Mol. Liq., 325, 114967 (2021).

    Article  Google Scholar 

  6. E. Marris, Nature, 442, 624 (2006).

    Article  Google Scholar 

  7. J. Lehmann, Nature, 447, 143 (2007).

    Article  Google Scholar 

  8. J. Chen, J. Ouyang, W. Lai, X. **ng, L. Zhou, Z. Liu, W. Chen and D. Cai, Sep. Purif. Technol., 279, 119700 (2021).

    Article  Google Scholar 

  9. D. Lv, Y. Li and L. Wang, Int. J. Biol. Macromol., 148, 979 (2020).

    Article  Google Scholar 

  10. M. Imran, A. Islam, M. U. Farooq, J. Ye and P. Zhang, Environ. Sci. Pollut. Res., 27(35), 43493 (2020).

    Article  Google Scholar 

  11. Z. Wang, P. **, M. Wang, G. Wu, C. Dong and A. Wu, ACS Appl. Mater. Interfaces, 8(48), 32862 (2016).

    Article  Google Scholar 

  12. X. Geng, S. Lv, J. Yang, S. Cui and Z. Zhao, J. Environ. Manage., 280, 111749 (2021).

    Article  Google Scholar 

  13. W. Zhang, J. Song, Q. He, H. Wang, W. Lyu, H. Feng, W. **ong, W. Guo, J. Wu and L. Chen, J. Hazard. Mater., 384, 121445 (2020).

    Article  Google Scholar 

  14. Z. Huang, C. **ong, M. Zhao, S. Wang, Y. Zhou, L. Dai and L. Zhang, Adv. Powder Technol., 32(4), 1013 (2021).

    Article  Google Scholar 

  15. L. Wu, X. Zhang and Y. Si, Mater. Chem. Phys., 279, 125767 (2022).

    Article  Google Scholar 

  16. M. Ahmad, S. S. Lee, X. Dou, D. Mohan, J. K. Sung, J. E. Yang and Y. S. Ok, Bioresour. Technol., 118, 536 (2012).

    Article  Google Scholar 

  17. M. Ahmad, S. S. Lee, A. U. Rajapaksha, M. Vithanage, M. Zhang, J. S. Cho, S. E. Lee and Y. S. Ok, Bioresour. Technol., 143, 615 (2013).

    Article  Google Scholar 

  18. H. Ao, W. Cao, Y. Hong, J. Wu and L. Wei, Sci. Total Environ., 708, 135092 (2020).

    Article  Google Scholar 

  19. L. Akhtar, M. Ahmad, S. Iqbal, A. A. Abdelhafez and M. T. Mehran, Environ. Technol. Innovation, 24, 101912 (2021).

    Article  Google Scholar 

  20. Y. Bulut and H. Aydin, Desalination, 194(1–3), 259 (2006).

    Article  Google Scholar 

  21. H. Bai, J. Chen, Z. Wang, L. Wang and E. Lamy, J. Chem. Eng. Data, 65(9), 4443 (2020).

    Article  Google Scholar 

  22. H. Yu, L. Gu, L. Chen, H. Wen, D. Zhang and H. Tao, Bioresour. Technol., 316, 123971 (2020).

    Article  Google Scholar 

  23. D. D. Sewu, P. Boakye and S. H. Woo, Bioresour. Technol., 224, 206 (2017).

    Article  Google Scholar 

  24. Y. Liu, H. G. Chae and S. Kumar, Carbon, 49(13), 4487 (2011).

    Article  Google Scholar 

  25. M. A. Khan, S. Khan, X. Ding, A. Khan and M. Alam, Chemosphere, 193, 1120 (2018).

    Article  Google Scholar 

  26. X. Yu, H. Fan, Y. Liu, Z. Shi and Z. **, Langmuir, 30(19), 5497 (2014).

    Article  Google Scholar 

  27. H. Xu, J. Sun, H. Wang, Y. Zhang and X. Sun, Food Chem., 365, 130409 (2021).

    Article  Google Scholar 

  28. H. Dong, X. Guo, C. Yang and Z. Ouyang, Appl. Catal. B: Environ., 230, 65 (2018).

    Article  Google Scholar 

  29. S.-Y. Yang, K.-H. Chang, Y.-L. Huang, Y.-F. Lee, H.-W. Tien, S.-M. Li, Y.-H. Lee, C.-H. Liu, C.-C. M. Ma and C.-C. Hu, Electrochem. Commun., 14(1), 39 (2012).

    Article  Google Scholar 

  30. N. Magesh, A. A. Renita, R. Siva, N. Harirajan and A. Santhosh, Chemosphere, 290, 133227 (2022).

    Article  Google Scholar 

  31. R. C. Dante, P. Chamorro-Posada, J. Vázquez-Cabo, Ó Rubiños-López F. M. Sánchez-Árevalo, L. Huerta, P. Martín-Ramos, L. Lartundo-Rojas, C. F. Ávila-Vega, E. D. Rivera-Tapia, C. A. Fajardo-Pruna, Á. J. Ávila-Vega and O. Solorza-Feria, Carbon, 121, 368 (2017).

    Article  Google Scholar 

  32. T. Atugoda, C. Gunawardane, M. Ahmad and M. Vithanage, Chemosphere, 281, 130676 (2021).

    Article  Google Scholar 

  33. S. H. Ho, Y. D. Chen, R. Li, C. Zhang, Y. Ge, G. Cao, M. Ma, X. Duan, S. Wang and N. Q. Ren, Water Res., 159, 77 (2019).

    Article  Google Scholar 

  34. Y. Xu and B. Chen, Bioresour. Technol., 146, 485 (2013).

    Article  Google Scholar 

  35. N. Rahman, P. Varshney and M. Nasir, Environ. Nanotechnol., Monit. Manage., 15 (2021).

  36. L. Emami Taba, M. F. Irfan, W. A. M. Wan Daud and M. H. Chakrabarti, Renew. Sustain. Energy Rev., 16(8), 5584 (2012).

    Article  Google Scholar 

  37. L. Wang, L. Zhang, B. Feng, X. Hua, Y. Li, W. Zhang and Z. Guo, Sci. Total Environ., 823, 153707 (2022).

    Article  Google Scholar 

  38. Y. Ma, T. Lu, L. Yang, L. Wu, P. Li, J. Tang, Y. Chen, F. Gao, S. Cui, X. Qi and Z. Zhang, Environ. Pollut., 298, 118833 (2022).

    Article  Google Scholar 

  39. Y. Wang, Y. Fang, Y. Gu, K. Guo, Z. Guo and C. Tang, J. Mol. Struct., 1255, 132475 (2022).

    Article  Google Scholar 

  40. C. Gu and K. G. Karthikeyan, Environ. Sci. Technol., 39, 9166 (2005).

    Article  Google Scholar 

  41. B. Yao, Z. Luo, S. Du, J. Yang, D. Zhi and Y. Zhou, Bioresour. Technol., 340, 125698 (2021).

    Article  Google Scholar 

  42. S. **e, L. Wang, Y. Xu, D. Lin, Y. Sun and S. Zheng, Sci. Total Environ., 740, 140009 (2020).

    Article  Google Scholar 

  43. Z. Wang, J. Su, X. Hu, A. Ali and Z. Wu, J. Hazard. Mater., 406, 124748 (2021).

    Article  Google Scholar 

  44. M. E. Mahmoud, A. K. Mohamed and M. A. Salam, J. Hazard. Mater., 408, 124951 (2021).

    Article  Google Scholar 

  45. D. Cheng, H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen, X. Zhang, S. Varjani and Y. Liu, Sci. Total Environ., 720, 137662 (2020).

    Article  Google Scholar 

  46. C. Jiang, X. Wang, D. Qin, W. Da, B. Hou, C. Hao and J. Wu, J. Hazard. Mater., 369, 50 (2019).

    Article  Google Scholar 

  47. K. Dong, K. Xu, N. Wei, Y. Fang and Z. Qin, Chem. Eng. Res. Des., 179, 227 (2022).

    Article  Google Scholar 

  48. L. R. Bonetto, J. S. Crespo, R. Guégan, V. I. Esteves and M. Giovanela, J. Mol. Struct., 1224, 129296 (2021).

    Article  Google Scholar 

  49. Y. Ma, T. Lu, L. Yang, L. Wu, P. Li, J. Tang, Y. Chen, F. Gao, S. Cui, X. Qi and Z. Zhang, Environ. Pollut., 298, 118833 (2022).

    Article  Google Scholar 

  50. X. Zhang, Y. Chu, H. Zhang, J. Hu, F. Wu, X. Wu, G. Shen, Y. Yang, B. Wang and X. Wang, Sci. Total Environ., 772, 145468 (2021).

    Article  Google Scholar 

  51. M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee and Y. S. Ok, Chemosphere, 99, 19 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by research funds from the financial support of National Natural Science Foundation of China (No. 41807120), the Cultivation Plan for Young Core Teachers in Universities of Henan Province (No. 2021GGJS063), Science and Technology Foundation of Henan Province (No. 212102310026, No. 202102310233) and the Young Backbone Teachers Training Program Foundation of Henan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjuan Bai or Junhang Chen.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Zhang, Q., Zhou, X. et al. Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified biochar aerogel. Korean J. Chem. Eng. 40, 215–222 (2023). https://doi.org/10.1007/s11814-022-1263-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1263-4

Keywords

Navigation