Log in

Assessment of MOF-801 synthesis for toluene adsorption by using design of experiment methodology

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A sequential design of experiments was used to optimize the MOF-801 synthesis process for toluene adsorption. First, mixture design was employed on optimizing precursor concentration. Three chemical materials, fumaric acid, N,N-dimethylformamide and formic acid, were selected to optimize their composition using extreme vertices design methods. By analysis of variance (ANOVA), the model was expected to be acceptable for statistical prediction. The optimal precursor composition for the synthesis of MOF-801 was predicted on a molar basis as fallows: ZrOCl2·8H2O: fumaric acid: dimethylformamide: formic acid=1.0: 1.7: 43.3: 39.5. Thereafter, 23 factorial design was selected to investigate the effect of synthesis reaction conditions such as temperature, time and stirring speed. By the statistical analysis of eight adsorption runs, stirring speed could be excluded in further investigation. Central composite design with synthesis time and temperature was performed to optimize the synthesis process. The results were estimated using the quadratic model equation derived through nine synthesis experiments. Using this model, it was predicted that MOF-801 prepared under the synthesis time and temperature of 158 °C and 12 h, respectively, had the maximum amount of toluene adsorption. Indeed, after synthesizing MOF-801 with the optimized synthesis conditions, an actual adsorption capacity of the samples was 151.9 mg/g, close to the predicted value of 95.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wu, B. Zhao, S. Wang and J. Hao, J. Environ. Sci, 53, 224 (2017).

    Article  CAS  Google Scholar 

  2. Y. Lu, J. Liu, B. Lu, A. Jiang and C. Wan, J. Hazard. Mater., 182, 204 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. L. Ma, M. He, P. Fu, X. Jiang, W. Lv, Y. Huang, Y. Liu and H. Wang, Sep. Purif. Technol., 235, 116146 (2020).

    Article  CAS  Google Scholar 

  4. X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan and J. Ran, Sep. Purif. Technol., 235, 116213 (2020).

    Article  CAS  Google Scholar 

  5. P. F. Biard, A. Couvert and S. Giraudet, J. Ind. Eng. Chem., 59, 70 (2018).

    Article  CAS  Google Scholar 

  6. W. Wu, B. Zhao, S. Wang and J. Hao, J. Environ. Sci., 53, 224 (2017).

    Article  CAS  Google Scholar 

  7. K. Vellingiri, P. Kumar, A. Deep and K. H. Kim, Chem. Eng. J., 307, 1116 (2017).

    Article  CAS  Google Scholar 

  8. T. K. Vo, V. N. Le, K. S. Yoo, M. Song, D. Kim and J. Kim, Cryst. Growth Des., 19, 4949 (2019).

    Article  CAS  Google Scholar 

  9. H. Liu, Y. Yu, Q. Shao and C. Long, Sep. Purif. Technol., 228, 115755 (2019).

    Article  CAS  Google Scholar 

  10. P. Yang, M. Song, D. Kim, S. P. Jung and Y. Hwang, Korean J. Chem. Eng., 36, 1806 (2019).

    Article  CAS  Google Scholar 

  11. M. A. Lillo-Ródenas, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 43, 1758 (2005).

    Article  Google Scholar 

  12. G. Mirth and J. A. Lercher, J. Phys. Chem., 95, 3736 (1991).

    Article  CAS  Google Scholar 

  13. S. Kubo and K. Kosuge, Langmuir, 23, 11761 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. S. Van der Perre, T. Van Assche, B. Bozbiyik, J. Lannoeye, D. E. De Vos, G. V. Baron and J. F. M. Denayer, Langmuir, 30, 8416 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. C. Y. Huang, M. Song, Z. Y. Gu, H. F. Wang and X. P. Yan, Environ. Sci. Technol., 45, 4490 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. T. K. Vo, J. H. Kim, H. T. Kwon and J. Kim, J. Ind. Eng. Chem., 80, 345 (2019).

    Article  CAS  Google Scholar 

  17. F. D. Lahoz-Martín, A. Martín-Calvo and S. Calero, J. Phys. Chem. C, 118, 13126 (2014).

    Google Scholar 

  18. D. W. Lee, T. Didriksen, U. Olsbye, R. Blom and C. A. Grande, Sep. Purif. Technol., 235, 116182 (2020).

    Article  CAS  Google Scholar 

  19. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe and O. M. Yaghi, Chem. Soc. Rev., 38, 1257 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Bai, Y. Dou, L.H. **e, W. Rutledge, J.R. Li and H.C. Zhou, Chem. Soc. Rev., 45, 2327 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider and P. Behrens, Micropor. Mesopor. Mater., 152, 64 (2012).

    Article  Google Scholar 

  22. G. Zahn, H. A. Schulze, J. Lippke, S. König, U. Sazama, M. Fröba and P. Behrens, Mieropor. Mesopor. Mater., 203, 186 (2015).

    Article  CAS  Google Scholar 

  23. H. Furukawa, F. Gandara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, J. Am. Chem. Soc., 136, 4369 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kye Sang Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Lee, M.H., Yoo, K.S. et al. Assessment of MOF-801 synthesis for toluene adsorption by using design of experiment methodology. Korean J. Chem. Eng. 39, 3129–3137 (2022). https://doi.org/10.1007/s11814-022-1199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1199-8

Keywords

Navigation