Log in

Genome-Wide Identification of heat shock protein 10/60 Genes in Japanese Flounder (Paralichthys olivaceus) and Their Regulated Expression After Bacterial Infection

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Heat shock proteins 10/60 (hsp10/60) are a family of conserved ubiquitously expressed heat shock proteins which are produced by cells in response to exposure to stressful conditions. Besides the chaperone and housekee** functions, they are also known to be involved in immune response during bacterial infection. In this study, we identified and annotated 10 hsp10/60 genes through bioinformatic analysis in Japanese flounder (Paralichthys olivaceus). Among them one member of hsp10 (hspe) family and nine members of hsp60 (hspd) family were identified. Phylogenetic and selection pressure analysis showed that the hsp10/60 genes were evolutionarily constrained and their function was conserved. Besides, hsp10/60 genes were involved in different embryonic and larval stages and acted as the sentinel role in an unchallenged organism. In addition, we also observed the expression patterns of hsp10/60 genes after Edwardsiella tarda infection, for the first time in Japanese flounder. Eight out of 10 genes were differentially expressed after bacterial challenges, the significantly regulated expressions of flounder hsp10/60 genes after bacterial infections suggested their involvement in immune response in flounder. Our results provide valuable information for clarifying the evolutionary relationship, and early insights of the immune functions of hsp10/60 genes in Japanese flounder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bang, J. D., Chun, S. K., Park, S. I., and Choi, Y. J., 1992. Studies on the biochemical and serological characteristics of Edwardsiella tarda isolated from cultured flounder, Paralichthys olivaceus. Journal of Fish Pathology, 5: 29–35.

    Google Scholar 

  • Bauer, S., and Hartmann, G., 2008. Toll Like Receptors (TLRs) and Innate Immunity. Springer, Berlin, 240pp.

    Book  Google Scholar 

  • Blanch, A., Pinto, R., and Jofre, J., 1990. Isolation and characterization of an Edwardsiella sp. strain, causative agent of mortalities in sea bass (Dicentrarchus labrax). Aquaculture, 88: 213–222.

    Article  Google Scholar 

  • Cha, I. S., Kwon, J., Park, S. B., Jang, H. B., Nho, S. W., Kim, Y. K., et al., 2013. Heat shock protein profiles on the protein and gene expression levels in olive flounder kidney infected with Streptococcus parauberis. Fish & Shellfish Immunology, 34: 1455–1462.

    Article  Google Scholar 

  • Chaurasia, M. K., 2016. A comparative statement on molecular approach of large HSPs from Macrobrachium rosenbergii. Fish & Shellfish Immunology, 53: 62.

    Article  Google Scholar 

  • Chen, C., **a, R., Chen, H., and He, Y., 2018. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 289660.

  • Chen, Y. M., Kuo, C. E., Wang, T. Y., Shie, P. S., Wang, W. C., Huang, S. L., et al., 2010. Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. Fish & Shellfish Immunology, 28: 895–904.

    Article  Google Scholar 

  • Cheng, J., Li, H., Huang, Z., Zhang, F., Bao, L., Li, Y., et al., 2019. Expression analysis of the heat shock protein genes and cellular reaction in dojo loach (Misgurnus anguillicaudatus) under the different pathogenic invasion. Fish & Shellfish Immunology, 95: 506–513.

    Article  Google Scholar 

  • Dai, L. S., Kausar, S., Gul, I., Zhou, H. L., Abbas, M. N., and Deng, M. J., 2020. Molecular characterization of a heat shock protein 21 (Hsp21) from red swamp crayfish, Procambarus clarkii in response to immune stimulation. Developmental & Comparative Immunology, 111: 103755.

    Article  Google Scholar 

  • Delport, W., Poon, A. F., Frost, S. D., and Kosakovsky Pond, S. L., 2010. Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26: 2455–2457.

    Article  Google Scholar 

  • Dong, C. W., Zhang, Y. B., Zhang, Q. Y., and Gui, J. F., 2006. Differential expression of three Paralichthys olivaceus Hsp40 genes in responses to virus infection and heat shock. Fish & Shellfish Immunology, 21: 146–158.

    Article  Google Scholar 

  • El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., et al., 2018. The Pfam protein families database in 2019. Nucleic Acids Research, 47: D427–D432.

    Article  Google Scholar 

  • Fuji, K., Kobayashi, K., Hasegawa, O., Coimbra, M. R. M., Sakamoto, T., and Okamoto, N., 2006. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture, 254: 203–210.

    Article  Google Scholar 

  • Fuller, K., Issels, R., Slosman, D., Guillet, J. G., Soussi, T., and Polla, B., 1994. Cancer and the heat shock response. European Journal of Cancer, 30: 1884–1891.

    Article  Google Scholar 

  • Gehrmann, M., Brunner, M., Pfister, K., Reichle, A., Kremmer, E., and Multhoff, G., 2004. Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs. Clinical Cancer Research, 10: 3354–3364.

    Article  Google Scholar 

  • Gething, M. J., 1997. Guidebook to Molecular Chaperones and Protein-Folding Catalysts. Oxford University Press, Oxford and New York, 554pp.

    Google Scholar 

  • Giri, S. S., Sen, S. S., Jun, J. W., Sukumaran, V., and Park, S. C., 2016. Immunotoxicological effects of cadmium on Labeo rohita, with emphasis on the expression of HSP genes. Fish & Shellfish Immunology, 54: 164–171.

    Article  Google Scholar 

  • Golub, V., Kim, A., and Krol, V., 2010. Surgical wound infection, tuboovarian abscess, and sepsis caused by Edwardsiella tarda: Case reports and literature review. Infection, 38: 487–489.

    Article  Google Scholar 

  • He, J., Wang, J., Xu, M., Wu, C., and Liu, H., 2016. The cooperative expression of heat shock protein 70 KD and 90 KD gene in juvenile Larimichthys crocea under Vibrio alginolyticus stress. Fish & Shellfish Immunology, 58: 359–369.

    Article  Google Scholar 

  • Hirai, Y., Asahata-Tago, S., Ainoda, Y., Fujita, T., and Kikuchi, K., 2015. Edwardsiella tarda bacteremia. A rare but fatal waterand foodborne infection: Review of the literature and clinical cases from a single centre. Canadian Journal of Infectious Diseases and Medical Microbiology, 26: 313–318.

    Article  Google Scholar 

  • Hoshina, T., 1962. On a new bacterium, Paracolobactrum anguillimortiferum n. sp. Bulletin of the Japanese Society of Fisheries, 28: 162–164.

    Article  Google Scholar 

  • Isshiki, T., Nishizawa, T., Kobayashi, T., Nagano, T., and Miyazaki, T., 2001. An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed Japanese flounder Paralichthys olivaceus in Japan. Diseases of Aquatic Organisms, 47: 87–99.

    Article  Google Scholar 

  • Itoh, H., Komatsuda, A., Ohtani, H., Wakui, H., Imai, H., Sawada, K. I., et al., 2002. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. European Journal of Biochemistry, 269: 5931–5938.

    Article  Google Scholar 

  • Jia, H., Halilou, A. I., Hu, L., Cai, W., Liu, J., and Huang, B., 2011. Heat shock protein 10 (Hsp10) in immune-related diseases: One coin, two sides. International Journal of Biochemistry and Molecular Biology, 2: 47.

    Google Scholar 

  • Kam**a, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., et al., 2009. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress and Chaperones, 14: 105–111.

    Article  Google Scholar 

  • Kim, J. H., and Kang, J. C., 2016. The immune responses and expression of metallothionein (MT) gene and heat shock protein 70 (HSP 70) in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+). Environmental Toxicology and Pharmacology, 47: 136–141.

    Article  Google Scholar 

  • Kim, J. H., Sohn, S., Kim, S. K., and Hur, Y. B., 2020. Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish & Shellfish Immunology, 97: 194–203.

    Article  Google Scholar 

  • Koester, J. A., Swanson, W. J., Armbrust, E. V., 2012. Positive selection within a diatom species acts on putative protein interactions and transcriptional regulation. Molecular Biology and Evolution, 30: 422–434.

    Article  Google Scholar 

  • Kolde, R., 2018. Pheatmap: Pretty Heatmaps, R Packag. Version 1.0.10.

  • Koll, H., Guiard, B., Rassow, J., Ostermann, J., Horwich, A. L., Neupert, W., et al., 1992. Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell, 68: 1163–1175.

    Article  Google Scholar 

  • Kosakovsky Pond, S. L., and Frost, S. D., 2005. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution, 22: 1208–1222.

    Article  Google Scholar 

  • Kryazhimskiy, S., and Plotkin, J. B., 2008. The population genetics of dN/dS. PLoS Genetics, 4(12): e1000304.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870–1874.

    Article  Google Scholar 

  • Lebret, T., Watson, R. W. G., Molinié, V., O’Neill, A., Gabriel, C., Fitzpatrick, J. M., et al., 2003. Heat shock proteins HSP27, HSP60, HSP70, and HSP90: Expression in bladder carcinoma. Cancer: Interdisciplinary International Journal of the American Cancer Society, 98: 970–977.

    Article  Google Scholar 

  • Leotta, G. A., Piñeyro, P., Serena, S., and Vigo, G. B., 2009. Prevalence of Edwardsiella tarda in Antarctic wildlife. Polar Biology, 32: 809–812.

    Article  Google Scholar 

  • Letunic, I., and Bork, P., 2017. 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46: D493–D496.

    Article  Google Scholar 

  • Li, J., Zhang, Y., Liu, Y., Zhang, Y., **ao, S., and Yu, Z., 2016. Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges. Fish & Shellfish Immunology, 48: 239–243.

    Article  Google Scholar 

  • Li, Z., Liu, X., Cheng, J., He, Y., Wang, X., Wang, Z., Qi, J., Yu, H., and Zhang, Q., 2018a. Transcriptome profiling provides gene resources for understanding gill immune responses in Japanese flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda. Fish & Shellfish Immunology, 72: 593–603.

    Article  Google Scholar 

  • Li, Z., Liu, X., Liu, J., Zhang, K., Yu, H., He, Y., Wang, X., et al., 2018b. Transcriptome profiling based on protein-protein interaction networks provides a core set of genes for understanding blood immune response mechanisms against Edwardsiella tarda infection in Japanese flounder (Paralichthys olivaceus). Developmental & Comparative Immunology, 78: 100–113.

    Article  Google Scholar 

  • Liang, P., and MacRae, T. H., 1997. Molecular chaperones and the cytoskeleton. Journal of Cell Science, 110: 1431–1440.

    Article  Google Scholar 

  • Liu, X., Li, Z., Wu, W., Liu, Y., Liu, J., He, Y., et al., 2017. Sequencing-based network analysis provides a core set of gene resource for understanding kidney immune response against Edwardsiella tarda infection in Japanese flounder. Fish & Shellfish Immunology, 67: 643–654.

    Article  Google Scholar 

  • Meistertzheim, A. L., Lejart, M., Le Goïc, N., and Thébault, M. T., 2009. Sex-, gametogenesis, and tidal height-related differences in levels of HSP70 and metallothioneins in the Pacific oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152: 234–239.

    Article  Google Scholar 

  • Meyer, F., and Bullock, G., 1973. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus). Applied Microbiology, 25: 155.

    Article  Google Scholar 

  • Ming, J., **e, J., Xu, P., Liu, W., Ge, X., Liu, B., et al., 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Mega- lobrama amblycephala Yih). Fish & Shellfish Immunology, 28: 407–418.

    Article  Google Scholar 

  • Moon, J. Y., Hong, Y. K., Kong, H. J., Kim, D. G., Kim, Y. O., Kim, W. J., et al., 2014. A cDNA microarray analysis to identify genes involved in the acute-phase response pathway of the olive flounder after infection with Edwardsiella tarda. Veterinary Immunology and Immunopathology, 161: 49–56.

    Article  Google Scholar 

  • Moustafa, E. M. M., Naota, M., Morita, T., Tange, N., and Shimada, A., 2010. Pathological study on the scuticociliatosis affecting farmed Japanese flounder (Paralichthys olivaceus) in Japan. Journal of Veterinary Medical Science, 72(10): 1359–1362.

    Article  Google Scholar 

  • Multhoff, G., 2006. Heat shock proteins in immunity. In: Molecular Chaperones in Health and Disease. Starke, K., and Gaestel, M., eds., Springer, Berlin, 279–304.

    Chapter  Google Scholar 

  • Nei, M., and Gojobori, T., 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3: 418–426.

    Google Scholar 

  • Ohashi, K., Burkart, V., Flohé, S., and Kolb, H., 2000. Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. The Journal of Immunology, 164: 558–561.

    Article  Google Scholar 

  • Ojima, N., Yamashita, M., and Watabe, S., 2005. Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout cells. Biochemical and Biophysical Research Communications, 329: 51–57.

    Article  Google Scholar 

  • Pond, S. L. K., and Frost, S. D., 2005. Datamonkey: Rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21: 2531–2533.

    Article  Google Scholar 

  • Press, C. M., and Evensen, Ø., 1999. The morphology of the immune system in teleost fishes. Fish & Shellfish Immunology, 9: 309–318.

    Article  Google Scholar 

  • Quintana, F. J., and Cohen, I. R., 2005. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. The Journal of Immunology, 175: 2777–2782.

    Article  Google Scholar 

  • Ranford, J., and Henderson, B., 2002. Chaperonins in disease: Mechanisms, models, and treatments. Molecular Pathology, 55: 209.

    Article  Google Scholar 

  • Ranford, J. C., Coates, A. R., and Henderson, B., 2000. Chaperonins are cell-signalling proteins: The unfolding biology of molecular chaperones. Expert Reviews in Molecular Medicine, 2: 1–17.

    Article  Google Scholar 

  • Ritossa, F. M., 1962. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia, 18: 515–523.

    Article  Google Scholar 

  • Roberts, R., Agius, C., Saliba, C., Bossier, P., and Sung, Y., 2010. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. Journal of Fish Diseases, 33: 789–801.

    Article  Google Scholar 

  • Sae-Oui, D., Muroga, K., and Nakai, T., 1984. A case of Edwardsiella tarda infection in cultured colored carp Cyprinus carpio. Fish Pathology, 19: 197–199.

    Article  Google Scholar 

  • Salinas, I., and Parra, D., 2015. Fish mucosal immunity: Intestine. In: Mucosal Health in Aquaculture. Beck, B. H., and Peatman, E., eds., Academic Press, Cambridge, 135–170.

    Chapter  Google Scholar 

  • Sarge, K., and Cullen, K., 1997. Regulation of hsp expression during rodent spermatogenesis. Cellular and Molecular Life Sciences CMLS, 53: 191–197.

    Article  Google Scholar 

  • Sathyamoorthy, A., Chaurasia, M. K., Arasu, M. V., Al-Dhabi, N. A., Harikrishnan, R., and Arockiaraj, J., 2017. Differences in structure and changes in gene regulation of murrel molecular chaperone HSP family during epizootic ulcerative syndrome (EUS) infection. Fish & Shellfish Immunology, 60: 129–140.

    Article  Google Scholar 

  • Sinha, D., Veedin Rajan, V. B., Esthaki, V. K., and D’Silva, P., 2012. HSPIR: A manually annotated heat shock protein information resource. Bioinformatics, 28: 2853–2855.

    Article  Google Scholar 

  • Song, L., Li, C., **e, Y., Liu, S., Zhang, J., Yao, J., et al., 2016. Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection. Fish & Shellfish Immunology, 49: 154–162.

    Article  Google Scholar 

  • Soonthornchai, W., Chaiyapechara, S., Klinbunga, S., Thongda, W., Tangphatsornruang, S., Yoocha, T., et al., 2016. Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection. Developmental & Comparative Immunology, 65: 53–63.

    Article  Google Scholar 

  • Sørensen, J. G., Kristensen, T. N., and Loeschcke, V., 2003. The evolutionary and ecological role of heat shock proteins. Ecology Letters, 6: 1025–1037.

    Article  Google Scholar 

  • Srivastava, P., 2002. Roles of heat-shock proteins in innate and adaptive immunity. Nature Reviews Immunology, 2: 185–194.

    Article  Google Scholar 

  • Sung, Y., and MacRae, T., 2011. Heat shock proteins and disease control in aquatic organisms. Journal of Aquaculture Research & Development, S2: 006.

    Google Scholar 

  • Tan, Y., Zheng, J., Tung, S., Rosenshine, I., and Leung, K., 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology, 151: 2301–2313.

    Article  Google Scholar 

  • Tsan, M. F., and Gao, B., 2004. Heat shock protein and innate immunity. Cellular & Molecular Immunology, 1: 274–279.

    Google Scholar 

  • Urushibara, M., Kageyama, Y., Akashi, T., Otsuka, Y., Takizawa, T., Koike, M., et al., 2007. HSP60 may predict good pathological response to neoadjuvant chemoradiotherapy in bladder cancer. Japanese Journal of Clinical Oncology, 37: 56–61.

    Article  Google Scholar 

  • Vabulas, R. M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C. J., Häcker, H., et al., 2001. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. Journal of Biological Chemistry, 276: 31332–31339.

    Article  Google Scholar 

  • Van Damme, L., and Vandepitte, J., 1980. Frequent isolation of Edwardsiella tarda and Pleisiomonas shigelloides from healthy Zairese freshwater fish: A possible source of sporadic diarrhea in the tropics. Applied and Environmental Microbiology, 39: 475–479.

    Article  Google Scholar 

  • Walker, J. M., 2005. The Proteomics Protocols Handbook. Humana Press, Totowa, 988pp.

    Book  Google Scholar 

  • Wang, P., Xu, P., Zhou, L., Zeng, S., and Li, G., 2017. Molecular cloning, characterization, and expression analysis of HSP60 in mandarin fish Siniperca chuatsi. The Israeli Journal of Aquaculture-Bamidgeh, 69: 1337, DOI: https://doi.org/10.46989/001c.21075.

    Google Scholar 

  • Wang, Q., Yang, M., **ao, J., Wu, H., Wang, X., Lv, Y., et al., 2009. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One, 4(10): e7646.

    Article  Google Scholar 

  • Wei, T., Gao, Y., Wang, R., and Xu, T., 2013. A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy. Fish & Shellfish Immunology, 35: 429–437.

    Article  Google Scholar 

  • White, F., Simpson, C., and Williams Jr., L., 1973. Isolation of Edwardsiella tarda from aquatic animal species and surface waters in Florida. Journal of Wildlife Diseases, 9: 204–208.

    Article  Google Scholar 

  • Whitley, D., Goldberg, S. P., and Jordan, W. D., 1999. Heat shock proteins: A review of the molecular chaperones. Journal of Vascular Surgery, 29: 748–751.

    Article  Google Scholar 

  • Wyatt, L. E., Nickelson, R., and Vanderzant, C., 1979. Edwardsiella tarda in freshwater catfish and their environment. Applied and Environmental Microbiology, 38: 710–714.

    Article  Google Scholar 

  • **ang, J., Chen, R., Xu, D., Sun, Y., and Liu, H., 2020. Characterization of pathological changes and immune-related gene expression in yellow drum (Nibea albiflora) in response to Pseudomonas plecoglossicida and poly I: C challenge. Aquaculture Reports, 17: 100350.

    Article  Google Scholar 

  • **ao, J., Wang, Q., Liu, Q., Wang, X., Liu, H., and Zhang, Y., 2008. Isolation and identification of fish pathogen Edwardsiella tarda from mariculture in China. Aquaculture Research, 40: 13–17.

    Article  Google Scholar 

  • **e, Y., Song, L., Weng, Z., Liu, S., and Liu, Z., 2015. Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. Fish & Shellfish Immunology, 44: 642–651.

    Article  Google Scholar 

  • Xu, X. Y., Shen, Y. B., Fu, J. J., Liu, F., Guo, S. Z., Yang, X. M., et al., 2011. Molecular cloning, characterization and expression patterns of HSP60 in the grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 31: 864–870.

    Article  Google Scholar 

  • Yan, W., Qiao, Y., He, J., Wang, Q., Chen, Z., Ni, F., et al., 2020. Characterisation, evolution and expression analysis of heat shock protein 20 genes from Japanese flounder (Paralichthys olivaceus) in response to Edwardsiella tarda infection. Aquaculture, 529: 735722.

    Article  Google Scholar 

  • Zhang, H., Gao, S., Lercher, M. J., Hu, S., and Chen, W. H., 2012. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Research, 40: W569–W572.

    Article  Google Scholar 

  • Zhou, J., Wang, W. N., He, W. Y., Zheng, Y., Wang, L., **n, Y., et al., 2010. Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge. Journal of Invertebrate Pathology, 103: 170–178.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFD0900 601) and the Natural Science Foundation of Shandong Province (No. ZR2017MC072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xubo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Qiao, Y., Liu, Y. et al. Genome-Wide Identification of heat shock protein 10/60 Genes in Japanese Flounder (Paralichthys olivaceus) and Their Regulated Expression After Bacterial Infection. J. Ocean Univ. China 20, 886–896 (2021). https://doi.org/10.1007/s11802-021-4662-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4662-y

Key words

Navigation