Log in

High-sensitivity photonic crystal fiber sensor based on surface plasmon resonance

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a photonic crystal fiber (PCF) sensor based on the surface plasmonic resonance (SPR) effect for simultaneous temperature and refractive index (RI) measurement. The coupling characteristics and sensing performance of the sensor are analyzed using the full vector finite element method (FEM). The sensor provides two channels for independent measurement of RI and temperature. When operating independently, channel I supports y-polarized light with a sensitivity of up to 7 000 nm/RIU for detecting RI, while channel II supports x-polarized light with a sensitivity of up to 16 nm/°C for detecting temperature. Additionally, we investigate the influence of gold layer thickness on the sensing performance to optimize the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RUSSELL P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358–362.

    Article  ADS  Google Scholar 

  2. CERQUEIRA S A. Recent progress and novel applications of photonic crystal fibers[J]. Reports on progress in physics, 2010, 73(2): 024401.

    Article  ADS  Google Scholar 

  3. ERDMAINS M, VIEGAS D, HAUTAKORPI M, et al. Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber[J]. Optics express, 2011, 19(15): 13980–13988.

    Article  ADS  Google Scholar 

  4. JORGENSON R C, YEE S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and actuators B: chemical, 1993, 12(3): 213–220.

    Article  Google Scholar 

  5. LIU Y, LI S, CHEN H, et al. Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field-enhanced photonic crystal fiber[J]. Journal of lightwave technology, 2019, 38(4): 919–928.

    Article  ADS  Google Scholar 

  6. YAN X, LI B, CHENG T L, et al. Analysis of high sensitivity photonic crystal fiber sensor based on surface plasmon resonance of refractive indexes of liquids[J]. Sensors, 2018, 18(9): 2922.

    Article  ADS  Google Scholar 

  7. LIU C, SU W, WANG F, et al. Birefringent PCF-based SPR sensor for a broad range of low refractive index detection[J]. IEEE photonics technology letters, 2018, 30(16): 1471–1474.

    Article  ADS  Google Scholar 

  8. CHAUDHARY V S, KUMAR D, KUMAR S. Gold-immobilized photonic crystal fiber-based SPR biosensor for detection of malaria disease in human body[J]. IEEE sensors journal, 2021, 21(16): 17800–17807.

    Article  ADS  Google Scholar 

  9. WANG B T, WANG Q. Sensitivity-enhanced optical fiber biosensor based on coupling effect between SPR and LSPR[J]. IEEE sensors journal, 2018, 18(20): 8303–8310.

    Article  ADS  Google Scholar 

  10. KUMAR S, GUO Z, SINGH R, et al. MoS2 functionalized multicore fiber probes for selective detection of shigella bacteria based on localized plasmon[J]. Journal of lightwave technology, 2021, 39(12): 4069–4081.

    Article  ADS  Google Scholar 

  11. ZHANG C, CHEN X, LIU X, et al. High sensitivity hydrogen sensor based on tilted fiber Bragg grating coated with PDMS/WO3 film[J]. International journal of hydrogen energy, 2022, 47(9): 6415–6420.

    Article  Google Scholar 

  12. AHMED F, AHSANI V, NAZERI K, et al. Monitoring of carbon dioxide using hollow-core photonic crystal fiber Mach-Zehnder interferometer[J]. Sensors, 2019, 19(15): 3357.

    Article  ADS  Google Scholar 

  13. YANG X, LU Y, LIU B, et al. Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF[J]. Applied optics, 2017, 56(15): 4369–4374.

    Article  ADS  Google Scholar 

  14. LIU X L, LIU J, YANG H M, et al. Design of a high-performance graphene/SiO2-Ag periodic grating/MoS2 surface plasmon resonance sensor[J]. Applied optics, 2022, 61(23): 6752–6760.

    Article  ADS  Google Scholar 

  15. ISALM N, ARIF M F H, YOUDUF M A, et al. Highly sensitive open channel based PCF-SPR sensor for analyte refractive index sensing[J]. Results in physics, 2023, 46: 106266.

    Article  Google Scholar 

  16. RIFAT A A, AHMES R, MAHDIRAJI G A, et al. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR[J]. IEEE sensors journal, 2017, 17(9): 2776–2783.

    Article  ADS  Google Scholar 

  17. CHAUDHARY V S, KUMAR D, PANDEY B P, et al. Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters-a review[J]. IEEE sensors journal, 2022, 23(2): 1012–1023.

    Article  ADS  Google Scholar 

  18. QIU H W, XU S C, JIANG S Z, et al. A novel graphene-based tapered optical fiber sensor for glucose detection[J]. Applied surface science, 2015, 329: 390–395.

    Article  ADS  Google Scholar 

  19. GHOSH G, ENDO M, IWASAKI T. Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses[J]. Journal of lightwave technology, 1994, 12(8): 1338–1342.

    Article  ADS  Google Scholar 

  20. LIU B H, JIANG Y X, ZHU X S, et al. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index[J]. Optics express, 2013, 21(26): 32349–32357.

    Article  ADS  Google Scholar 

  21. VIAL A, GRIMAULT A S, MACIAS D, et al. Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method[J]. Physical review B, 2005, 71(8): 085416.

    Article  ADS  Google Scholar 

  22. MIAO Y P, ZHANG H, LIN J C, et al. Simultaneous measurement of temperature and magnetic field based on a long period grating concatenated with multimode fiber[J]. Applied physics letters, 2015, 106(13): 123410.

    Article  Google Scholar 

  23. ISLAM N, MASUM M M U, ARIF M F H, et al. Enhanced sensitivity of open channel SPR-based PCF sensor employing plasmonic materials for analyte sensing[J]. Plasmonics, 2022, 17(5): 2075–2087.

    Article  Google Scholar 

  24. LIU Y D, JING X L, LI S G, et al. High-sensitivity plasmonic temperature sensor based on gold-coated D-shaped photonic crystal fiber[J]. Applied optics, 2019, 58(18): 5115–5121.

    Article  ADS  Google Scholar 

  25. ZHANG J G, YUAN J H, QU Y W, et al. A surface plasmon resonance-based photonic crystal fiber sensor for simultaneously measuring the refractive index and temperature[J]. Polymers, 2022, 14(18): 3893.

    Article  Google Scholar 

  26. SARKER S, DHASARATHAN V, STUDNICKA F. Design of a nanoscale gold coated photonic crystal fiber bio-sensor[J]. Frontiers in physics, 2023, 11: 1164255.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **anbing Ming.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the Natural Science Foundation of Tian** City (No.19JCYBJC17000), and the National Natural Science Foundation of China (No.11905159).

MING **anbing is an associate professor at the School of Physical Science and Technology, Tiangong University. He received his Ph.D. degree in 2012 from Shandong University. His research interests are mainly in material physics. E-mail: mingxb@tiangong.edu.cn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Gao, J. & Ming, X. High-sensitivity photonic crystal fiber sensor based on surface plasmon resonance. Optoelectron. Lett. 20, 393–399 (2024). https://doi.org/10.1007/s11801-024-3229-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3229-8

Document code

Navigation