Log in

Moment polytopes, semigroup of representations and Kazarnovskii’s theorem

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Two representations of a reductive group G are spectrally equivalent if the same irreducible representations appear in both of them. The semigroup of finite-dimensional representations of G with tensor product and up to spectral equivalence is a rather complicated object. We show that the Grothendieck group of this semigroup is more tractable and we give a description of it in terms of moment polytopes of representations. As a corollary, we give a proof of the Kazarnovskii theorem on the number of solutions in G of a system f 1 = · · · = f m = 0, where m = dim(G) and each f i is a generic function in the space of matrix elements of a representation π i of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Bernstein, The number of roots of a system of equations. Funkcional. Anal. i Priložen. 9 (1975), 1–4 (in Russian); English transl.: Functional Anal. Appl. 9 (1975), 183–185 (1976).

  2. Berenstein A., Zelevinsky A.: Tensor product multiplicities and convex polytopes in partition space. J. Geom. Phys. 5, 453–472 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berenstein A., Zelevinsky A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143, 77–128 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brion M.: Groupe de Picard et nombres caracteristiques des varietes spheriques. Duke Math. J. 58, 397–424 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yu. D. Burago and V. A. Zalgaller, Geometric inequalities. Nauka Leningrad. Otdel., Leningrad, 1980 (in Russian).

  6. I. M. Gelfand and M. L. Cetlin, Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk USSR (N.S.) 71 (1950), 825–828 (in Russian); English transl.: I. M. Gelfand, in: Collected Papers, Vol. II, S. G. Gindikin et al. (eds.), Springer-Verlag, Berlin, 1988, pp. 653–656.

  7. M. Kapranov, Hypergeometric functions on reductive groups. In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), 236–281, World Sci., River Edge, NJ, 1998.

  8. Kaveh K., Khovanskii A.G.: Mixed volume and an extension of intersection theory of divisors. Mosc. Math. J. 10, 343–375 (2010)

    Google Scholar 

  9. K. Kaveh and A. G. Khovanskii, Newton-Okounkov convex bodies, semigroups of integral points, graded algebras and intersection theory. Preprint, ar**v:0904.3350v1.

  10. K. Kaveh and A. G. Khovanskii, Convex bodies associated to actions of reductive groups. Preprint, ar**v:1001.4830v1.

  11. B. Kazarnovskii, Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations. Funktsional. Anal. i Prilozhen. 21 (1987), 73–74 (in Russian); English transl.: Funct. Anal. Appl. 21 (1987), 319–321.

  12. A. G. Khovanskii, The Newton polytope, the Hilbert polynomial and sums of finite sets. Funktsional. Anal. i Prilozhen. 26 (1992), 57–63 (in Russian); English transl.: Funct. Anal. Appl. 26 (1992), 276–281.

  13. A. V. Pukhlikov and A. G. Khovanskii, Finitely additive measures of virtual polyhedra. Algebra i Analiz 4 (1992), 161–185 (in Russian); English transl.: St. Petersburg Math. J. 4 (1993), 337–356.

  14. Kiritchenko V.: Chern classes of reductive groups and an adjunction formula. Ann. Inst. Fourier (Grenoble) 56, 1225–1256 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Kiritchenko V.: On intersection indices of subvarieties in reductive groups. Mosc. Math. J. 7, 489–505, 575 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Kumar S.: Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture. Invent. Math. 93, 117–130 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kushnirenko A.G.: Polyedres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Littelmann P.: Cones, crystals, and patterns. Transform. Groups 3, 145–179 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Okounkov, Note on the Hilbert polynomial of a spherical variety. Funktsional. Anal. i Prilozhen. 31 (1997), 82–85 (in Russian); English transl.: Funct. Anal. Appl. 31 (1997), 138–140.

  20. Parthasarathy K.R., Ranga Rao R., Varadarajan V.S.: Representations of complex semi-simple Lie groups and Lie algebras. Ann. of Math. (2) 85, 383–429 (1967)

    Article  MathSciNet  Google Scholar 

  21. D. A. Timashev, Equivariant compactifications of reductive groups. Mat. Sb. 194 (2003), 119–146 (in Russian); English transl.: Sb. Math. 194 (2003), 589–616.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Khovanskii.

Additional information

To Stephen Smale, our mathematical hero

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaveh, K., Khovanskii, A.G. Moment polytopes, semigroup of representations and Kazarnovskii’s theorem. J. Fixed Point Theory Appl. 7, 401–417 (2010). https://doi.org/10.1007/s11784-010-0027-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-010-0027-7

Mathematics Subject Classification (2010)

Keywords

Navigation