Log in

Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Post-treatment impacts of a novel combined hydrogen peroxide (H2O2) oxidation and WOx/ZrO2 catalysis used for the removal of 1,4-dioxane and chlorinated volatile organic compound (CVOC) contaminants were investigated in soil and groundwater microbial community. This treatment train removed ~90% 1,4-dioxane regardless of initial concentrations of 1,4-dioxane and CVOCs. The Illumina Miseq platform and bioinformatics were used to study the changes to microbial community structure. This approach determined that dynamic shifts of microbiomes were associated with conditions specific to treatments as well as 1,4-dioxane and CVOCs mixtures. The biodiversity was observed to decrease only after oxidation under conditions that included high levels of 1,4-dioxane and CVOCs, but increased when 1,4-dioxane was present without CVOCs. WOx/ZrO2 catalysis reduced biodiversity across all conditions. Taxonomic classification demonstrated oxidative tolerance for members of the genera Massilia and Rhodococcus, while catalyst tolerance was observed for members of the genera Sphingomonas and Devosia. Linear discriminant analysis effect size was a useful statistical tool to highlight representative microbes, while the multidimensional analysis elucidated the separation of microbiomes under the low 1,4-dioxane-only condition from all other conditions containing CVOCs, as well as the differences of microbial population among original, post-oxidation, and post-catalysis states. The results of this study enhance our understanding of microbial community responses to a promising chemical treatment train, and the metagenomic analysis will help practitioners predict the microbial community status during the post-treatment period, which may have consequences for long-term management strategies that include additional biodegradation treatment or natural attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson D, Newell C, Mahendra S, Bryant D, Wong M (2017). In situ treatment and management strategies for 1, 4-dioxane-contaminated groundwater. Houston: GSI Environmental Inc., Houston United States. SERDP Project ER-2307

    Google Scholar 

  • Adamson D T, Anderson R H, Mahendra S, Newell C J (2015). Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. Environmental Science & Technology, 49(11): 6510–6518

    CAS  Google Scholar 

  • Anderson R H, Anderson J K, Bower P A (2012). Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction. Integrated Environmental Assessment and Management, 8(4): 731–737

    CAS  Google Scholar 

  • Barndõk H, Hermosilla D, Han C, Dionysiou D D, Negro C, Blanco A (2016). Degradation of 1,4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles. Applied Catalysis B: Environmental, 180: 44–52

    Google Scholar 

  • Bidaud P, Hébert L, Barbey C, Appourchaux A C, Torelli R, Sanguinetti M, Laugier C, Petry S (2012). Rhodococcus equi’s extreme resistance to hydrogen peroxide is mainly conferred by one of its four catalase genes. PLoS One, 7(8): e42396

    CAS  Google Scholar 

  • Chao Y, Liu W, Chen Y, Chen W, Zhao L, Ding Q, Wang S, Tang Y T, Zhang T, Qiu R L (2016). Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine. Environmental Science & Technology, 50(21): 11481–11490

    CAS  Google Scholar 

  • Chen K F, Chang Y C, Chiou W T (2016). Remediation of dieselcontaminated soil using In situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 91(6): 1877–1888

    CAS  Google Scholar 

  • Chitra S, Paramasivan K, Cheralathan M, Sinha P K (2012). Degradation of 1,4-dioxane using advanced oxidation processes. Environmental Science and Pollution Research International, 19(3): 871–878

    CAS  Google Scholar 

  • Choi P G, Nunotani N, Imanaka N (2017). High catalytic efficiency in liquid-phase oxidation of 1,4-dioxane using a Pt/CeO2-ZrO2-SnO2/SBA-16 catalyst. International Journal of Applied Ceramic Technology, 14(1): 9–15

    CAS  Google Scholar 

  • Dingman D W (2011). Inactivation of Paenibacillus larvae endospores by a hydrogen peroxide/peroxyacetic acid biocide. Journal of Apicultural Research, 50(2): 173–175

    CAS  Google Scholar 

  • Eberle D, Ball R, Boving T B (2016). Peroxone activated persulfate treatment of 1,4-dioxane in the presence of chlorinated solvent cocontaminants. Chemosphere, 144: 728–735

    CAS  Google Scholar 

  • Feng Y, Lee P H, Wu D, Shih K (2017). Surface-bound sulfate radicaldominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate. Water Research, 120: 12–21

    CAS  Google Scholar 

  • Fida T T, Moreno-Forero S K, Breugelmans P, Heipieper H J, Röling W F, Springael D (2017). Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after Inoculation in soil. Environmental Science & Technology, 51(3): 1570–1579

    CAS  Google Scholar 

  • Gedalanga P, Madison A, Miao Y, Richards T, Hatton J, DiGuiseppi W H, Wilson J, Mahendra S (2016). A multiple lines of evidence framework to evaluate intrinsic biodegradation of 1,4-dioxane. Remediation, 27(1): 93–114

    Google Scholar 

  • Gedalanga P B, Pornwongthong P, Mora R, Chiang S Y D, Baldwin B, Ogles D, Mahendra S (2014). Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Applied and Environmental Microbiology, 80(10): 3209–3218

    Google Scholar 

  • Gururani M A, Upadhyaya C P, Baskar V, Venkatesh J, Nookaraju A, Park S W (2013). Plant growth-promoting Rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, 32(2): 245–258

    CAS  Google Scholar 

  • Hall E A, Bell S G (2015). The efficient and selective biocatalytic oxidation of norisoprenoid and aromatic substrates by CYP101B1 from Novosphingobium aromaticivorans DSM12444. RSC Advances, 5(8): 5762–5773

    CAS  Google Scholar 

  • Handtke S, Schroeter R, Jürgen B, Methling K, Schlüter R, Albrecht D, van Hijum S A F T, Bongaerts J, Maurer K H, Lalk M, Schweder T, Hecker M, Voigt B (2014). Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress. PLoS One, 9(1): e85625

    Google Scholar 

  • Ikehata K, Wang-Staley L, Qu X Y, Li Y (2016). Treatment of groundwater contaminated with 1,4-dioxane, tetrahydrofuran, and chlorinated volatile organic compounds using advanced oxidation processes. Ozone Science and Engineering, 38(6): 413–424

    CAS  Google Scholar 

  • Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M (2016). 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation, 27(4-6): 277–286

    CAS  Google Scholar 

  • Jasmann J R, Gedalanga P B, Borch T, Mahendra S, Blotevogel J (2017). Synergistic treatment of mixed 1,4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation. Environmental Science & Technology, 51(21): 12619–12629

    CAS  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner F O (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies. Nucleic Acids Research, 41(1): e1

    CAS  Google Scholar 

  • Lan R S, Smith C A, Hyman M R (2013). Oxidation of cyclic ethers by alkane-grown Mycobacterium vaccae JOB5. Remediation Journal, 23(4): 23–42

    Google Scholar 

  • Laurent F, Cébron A, Schwartz C, Leyval C (2012). Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere, 86 (6): 659–664

    CAS  Google Scholar 

  • Lefevre E, Bossa N, Wiesner M R, Gunsch C K (2016). A review of the environmental implications of In situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Science of The Total Environment, 565: 889–901

    CAS  Google Scholar 

  • Li J, Lu Q, de Toledo R A, Lu Y, Shim H (2015b). Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry. Environmental Geochemistry and Health, 37(6): 985–995

    Google Scholar 

  • Li M, Fiorenza S, Chatham J R, Mahendra S, Alvarez P J J (2010). 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples. Water Research, 44(9): 2894–2900

    CAS  Google Scholar 

  • Li M, Van Orden E T, DeVries D J, **ong Z, Hinchee R, Alvarez P J (2015a). Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California. Biodegradation, 26(1): 39–50

    CAS  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2005). Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. International Journal of Systematic and Evolutionary Microbiology, 55(2): 593–598

    CAS  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2006). Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environmental Science & Technology, 40(17): 5435–5442

    CAS  Google Scholar 

  • Mahendra S, Grostern A, Alvarez-Cohen L (2013). The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane. Chemosphere, 91(1): 88–92

    CAS  Google Scholar 

  • Mahendra S, Petzold C J, Baidoo E E, Keasling J D, Alvarez-Cohen L (2007). Identification of the intermediates of in vivo oxidation of 1, 4- dioxane by monooxygenase-containing bacteria. Environmental Science & Technology, 41(21): 7330–7336

    CAS  Google Scholar 

  • McMurdie P J, Holmes S (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4): e61217

    CAS  Google Scholar 

  • Medina R, David Gara P M, Fernández-González A J, Rosso J A, Del Panno M T (2018). Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation. Science of The Total Environment, 618: 518–530

    CAS  Google Scholar 

  • Miao Y, Liao R, Zhang X X, Wang Y, Wang Z, Shi P, Liu B, Li A (2015). Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater. Water Research, 76: 43–52

    CAS  Google Scholar 

  • Miao Y, Wang Z, Liao R H, Shi P, Li A M (2017). Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater. Chemical Engineering Journal, 330: 757–763

    CAS  Google Scholar 

  • Mohr T K G, Stickney J A, DiGuiseppi W H (2010). Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers. Boca Raton, FL: CRC Press, Taylor & Francis Group

    Google Scholar 

  • Munakata-Marr J, Sorenson K S, Petri B G, Cummings J B (2011). Principles of combining ISCO with other in situ remedial approaches. In: Siegrist R, Crimi M, Simpkin T, eds. In situ Chemical Oxidation for Groundwater Remediation. New York, NY: Springer, SERDP/ESTCP Environmental Remediation Technology, vol 3, 285–317

    Google Scholar 

  • Myers M A, Johnson NW, Zerecero-Marin E, Pornwongthong P, Liu Y, Gedalanga P B, Mahendra S (2018). Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water. Environmental Pollution, 240: 916–924

    CAS  Google Scholar 

  • Nemecek J, Pokorný P, Lhotský O, Knytl V, Najmanová P, Steinová J, Cerník M, Filipová A, Filip J, Cajthaml T (2016). Combined nanobiotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Science of The Total Environment, 563–564: 822–834

    Google Scholar 

  • Padhy R N, Nayak N, Rath S (2014). Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2- fixing cyanobacterium Cylindrospermum sp. in vitro. Interdisciplinary Toxicology, 7(1): 5–11

    CAS  Google Scholar 

  • Pornwongthong P, Mulchandani A, Gedalanga P B, Mahendra S (2014). Transition metals and organic ligands influence biodegradation of 1,4-dioxane. Applied Biochemistry and Biotechnology, 173(1): 291–306

    CAS  Google Scholar 

  • Richardson S D, Lebron B L, Miller C T, Aitken M D (2011). Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. Environmental Science & Technology, 45(2): 719–725

    CAS  Google Scholar 

  • San Miguel A, Roy J, Gury J, Monier A, Coissac E, Ravanel P, Geremia R A, Raveton M (2014). Effects of organochlorines on microbial diversity and community structure in Phragmites australis rhizosphere. Applied Microbiology and Biotechnology, 98(9): 4257–4266

    Google Scholar 

  • Santiago A J, Ahmed M N A, Wang S L, Damera K, Wang B, Tai P C, Gilbert E S, Derby C D (2016). Inhibition and dispersal of Pseudomonas aeruginosa biofilms by combination treatment with escapin intermediate products and hydrogen peroxide. Antimicrobial Agents and Chemotherapy, 60(9): 5554–5562

    CAS  Google Scholar 

  • Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl JW, Stres B, Thallinger G G, Van Horn D J, Weber C F (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537–7541

    CAS  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W S, Huttenhower C (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6): R60

    Google Scholar 

  • Sei K, Kakinoki T, Inoue D, Soda S, Fujita M, Ike M (2010). Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples. Biodegradation, 21(4): 585–591

    CAS  Google Scholar 

  • Sekar R, Taillefert M, DiChristina T J (2016). Simultaneous transformation of commingled trichloroethylene, tetrachloroethylene, and 1,4-dioxane by a microbially driven fenton reaction in batch liquid cultures. Applied and Environmental Microbiology, 82(21): 6335–6343

    CAS  Google Scholar 

  • Simonin M, Richaume A (2015). Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environmental Science and Pollution Research International, 22(18): 13710–13723

    CAS  Google Scholar 

  • Soultanidis N, Zhou W, Psarras A C, Gonzalez A J, Iliopoulou E F, Kiely C J, Wachs I E, Wong M S (2010). Relating n-pentane isomerization activity to the tungsten surface density of WO(x)/ZrO2. Journal of the American Chemical Society, 132(38): 13462–13471

    CAS  Google Scholar 

  • Suthersan S, Quinnan J, Horst J, Ross I, Kalve E, Bell C, Pancras T (2016). Making strides in the management of “Emerging Contaminants”. Ground Water Monitoring and Remediation, 36(1): 15–25

    Google Scholar 

  • Sutton N B, Langenhoff A A, Lasso D H, van der Zaan B, van Gaans P, Maphosa F, Smidt H, Grotenhuis T, Rijnaarts H H (2014). Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils. Applied Microbiology and Biotechnology, 98(6): 2751–2764

    CAS  Google Scholar 

  • Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra G J, Steffan R J (2006). Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478. Applied and Environmental Microbiology, 72(8): 5218–5224

    CAS  Google Scholar 

  • Wilson M M, Metcalf W W (2005). Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072. Applied and Environmental Microbiology, 71(1): 290–296

    CAS  Google Scholar 

  • Xu X H, Liu X M, Zhang L, Mu Y, Zhu X Y, Fang J Y, Li S P, Jiang J D (2018). Bioaugmentation of chlorothalonil-contaminated soil with hydrolytically or reductively dehalogenating strain and its effect on soil microbial community. Journal of Hazardous Materials, 351: 240–249

    CAS  Google Scholar 

  • Yang Y, Cheng D, Li Y, Yu L, Gin K Y H, Chen J P, Reinhard M (2017). Effects of monochloramine and hydrogen peroxide on the bacterial community shifts in biologically treated wastewater. Chemosphere, 189: 399–406

    CAS  Google Scholar 

  • Zhang S, Gedalanga P B, Mahendra S (2016). Biodegradation kinetics of 1,4-dioxane in chlorinated solvent mixtures. Environmental Science & Technology, 50(17): 9599–9607

    CAS  Google Scholar 

  • Zhang S, Gedalanga P B, Mahendra S (2017). Advances in bioremediation of 1,4-dioxane-contaminated waters. Journal of Environmental Management, 204(Pt 2): 765–774

    CAS  Google Scholar 

  • Zheng Y G, Yin H H, Yu D F, Chen X, Tang X L, Zhang X J, Xue Y P, Wang Y J, Liu Z Q (2017). Recent advances in biotechnological applications of alcohol dehydrogenases. Applied Microbiology and Biotechnology, 101(3): 987–1001

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Strategic Environmental Research and Development Program (SERDP) award ER-2307 and by National Science Foundation Faculty Early Career Development (CAREER) award #1255021. This research was performed in a renovated collaboratory funded by the National Science Foundation Grant Number 0963183, which was awarded under the American Recovery and Reinvestment Act of 2009 (ARRA). The authors thank Michelle Myers for her assistance with 1,4- dioxane analyses and total nucleic acids extractions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaily Mahendra.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Johnson, N.W., Heck, K. et al. Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil. Front. Environ. Sci. Eng. 12, 2 (2018). https://doi.org/10.1007/s11783-018-1071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1071-6

Keywords

Navigation