Log in

Characterization of soil heavy metals at an abandoned smelting site based on particle size fraction and its implications for remediation strategy

某废弃冶炼场地土壤不同粒径组分重金属的特征及其对修复策略的启示

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Soil particle size plays a crucial role in the distribution and occurrence of soil heavy metals (HMs). Comparative studies on the distribution of HMs across soil particle sizes of various areas affected by smelting are scarce. Three soil profiles, including smelting slag heap (SH), traffic area (TA), and adjacent farmland (FA), were sampled at an abandoned Pb smelting site, and the geochemical distribution and occurrence of HMs in different soil particle fractions (>150 µm, 45 −150 µm, and <45 µm) were comparatively investigated. Results showed different distribution of HMs across soil fractions between the smelting site and farmland. Average accumulation factors (FA) of HMs increased from 0.78 to 1.14 as the particle size increased in the SH related to the stockpiling and mechanical mixing of coarse slags, while decreased from 1.49 to 0.60 in the FA related to metal-enriched fine particles released from smelting. The coarser fraction had a higher mass loading of HMs (>50%) in the smelting site soils, where the contribution of waste residues was significant. Therefore, physical separation techniques are recommended in the remediation of soil contamination. The study connected smelting impacts and occurrence of HMs across particle sizes which has implications for remediation strategy.

摘要

颗粒粒径组分对土壤重金属的分布与赋存具有重要影响,而当前对受冶炼活动影响的不同区域 间土壤各粒径组分重金属分布的比较研究较少。本研究以某废弃铅冶炼场地为研究对象,选取三个土 壤剖面(冶炼固废堆存区、交通区和邻**的农田),对比研究了不同土壤颗粒粒径组分(>150、45∼150 和 <45 µm)中重金属的地球化学分布特征及赋存形态。结果显示,冶炼场地与周边农田土壤各粒径组分 重金属的分布特征具有明显差异。随着粒径的增大,冶炼固废堆存区土壤重金属的富集因子从0.78 增 至1.14,这与该区粗粒废渣的堆放与机械混合相关;而农田土壤重金属的富集因子从1.49 降至0.60, 这与冶炼过程释放富集重金属的细颗粒沉降有关。同时,冶炼场地土壤的较粗组分(>45 µm)具有较高 的重金属质量负载量(>50%),且废渣颗粒对土壤重金属的贡献显著,故物理分离技术可用于该场地的 土壤污染修复。此外,石膏和莫来石可能是该场地受冶炼活动影响土壤的指示矿物。本研究将冶炼活 动影响与土壤不同粒径组分重金属的赋存形态相关联,对修复策略具有一定的指导意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. KHAN S, NAUSHAD M, LIMA E C, et al. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies −A review [J]. Journal of Hazardous Materials, 2021, 417: 126039. DOI: https://doi.org/10.1016/j.jhazmat.2021.126039.

    Article  Google Scholar 

  2. HOU De-yi, Al-TABBAA A, O’CONNOR D, et al. Sustainable remediation and redevelopment of brownfield sites [J]. Nature Reviews Earth & Environment, 2023, 4(4): 271–286. DOI: https://doi.org/10.1038/s43017-023-00404-1.

    Article  Google Scholar 

  3. ETTLER V, MIHALJEVIČ M, KŘÍBEK B, et al. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia [J]. Geoderma, 2011, 164(1–2): 73–84. DOI: https://doi.org/10.1016/j.geoderma.2011.05.014.

    Article  Google Scholar 

  4. XU Da-mao, FU Rong-bing, LIU Hua-qiu, et al. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review [J]. Journal of Cleaner Production, 2021, 286: 124989. DOI: https://doi.org/10.1016/j.jclepro.2020.124989.

    Article  Google Scholar 

  5. ZENG Jia-qing, KE Wen-shun, DENG Min, et al. A practical method for identifying key factors in the distribution and formation of heavy metal pollution at a smelting site [J]. Journal of Environmental Sciences, 127: 552–563. DOI: https://doi.org/10.1016/j.jes.2022.06.026.

  6. YUAN Yong-qiang, XIANG Meng, LIU Cong-qiang, et al. Geochemical characteristics of heavy metal contamination induced by a sudden wastewater discharge from a smelter [J]. Journal of Geochemical Exploration, 2017, 176: 33–41. DOI: https://doi.org/10.1016/j.gexplo.2016.07.005.

    Article  Google Scholar 

  7. CHOPIN E I B, ALLOWAY B J. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain [J]. Science of the Total Environment, 2007, 373(2 - 3): 488–500. DOI: https://doi.org/10.1016/j.scitotenv.2006.11.037.

    Article  Google Scholar 

  8. J***MISSING END TAG***, GUO Zhao-hui, PENG Chi, et al. Heavy metals in soils around non-ferrous smelteries in China: Status, health risks and control measures [J]. Environmental Pollution, 2021, 282: 117038. DOI: https://doi.org/10.1016/j.envpol.2021.117038.

    Article  Google Scholar 

  9. ZENG Jia-qing, GAO Wen-yan, LI Xue, et al. Research progress on characteristics and remediation of heavy metal pollution in non-ferrous smelting sites [J]. The Chinese Journal of Nonferrous Metals, 2023, 33(10): 3440–3461. DOI: https://doi.org/10.11817/j.ysxb.1004.0609.2022-43599. (in Chinese)

    Google Scholar 

  10. HE **, PENG Zhi-hong, ZENG Jia-qing, et al. Source apportionment and quantitative risk assessment of heavy metals at an abandoned zinc smelting site based on GIS and PMF models [J]. Journal of Environmental Management, 2023, 336: 117565. DOI: https://doi.org/10.1016/j.jenvman.2023.117565.

    Google Scholar 

  11. KE Wen-shun, ZENG Jia-qing, ZHU Feng, et al. Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting [J]. Environmental Pollution, 2022, 307: 119486. DOI: https://doi.org/10.1016/j.envpol.2022.119486.

    Article  Google Scholar 

  12. LI Chu-xuan, LI Mu, ZENG Jia-qing, et al. Migration and distribution characteristics of soil heavy metal(loid)s at a lead smelting site [J]. Journal of Environmental Sciences, 2024, 135: 600–609. DOI: https://doi.org/10.1016/j.jes.2023.02.007.

    Article  Google Scholar 

  13. ZENG Jia-qing, LUO **ng-hua, CHENG Yi-zhi, et al. Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China [J]. Journal of Hazardous Materials, 2022, 425: 127970. DOI: https://doi.org/10.1016/j.jhazmat.2021.127970.

    Article  Google Scholar 

  14. LUO **ng-hua, WU Chuan, LIN Yong-cheng, et al. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization [J]. Journal of Environmental Sciences, 2023, 125: 662–677. DOI: https://doi.org/10.1016/j.jes.2022.01.029.

    Article  Google Scholar 

  15. ETTLER V. Soil contamination near non-ferrous metal smelters: A review [J]. Applied Geochemistry, 2016, 64: 56–74. DOI: https://doi.org/10.1016/j.apgeochem.2015.09.020.

    Article  Google Scholar 

  16. BARI A S M F, LAMB D, CHOPPALA G, et al. Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation [J]. Journal of Hazardous Materials, 2020, 399: 123029. DOI: https://doi.org/10.1016/j.jhazmat.2020.123029.

    Article  Google Scholar 

  17. LI Yan, PADOAN E, AJMONE-MARSAN F. Soil particle size fraction and potentially toxic elements bioaccessibility: A review [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111806. DOI: https://doi.org/10.1016/j.ecoenv.2020.111806.

    Article  Google Scholar 

  18. LANDROT G, KHAOKAEW S. Lead speciation and association with organic matter in various particle-size fractions of contaminated soils [J]. Environmental Science & Technology, 2018, 52(12): 6780–6788. DOI: https://doi.org/10.1021/acs.est.8b00004.

    Article  Google Scholar 

  19. DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: A review of physical/chemical technologies and field applications [J]. Journal of Hazardous Materials, 2008, 152(1): 1–31. DOI: https://doi.org/10.1016/j.jhazmat.2007.10.043.

    Article  Google Scholar 

  20. ZHAO Jian-feng, LUO Qi-shi, DING Lei, et al. Valency distributions and geochemical fractions of arsenic and antimony in non-ferrous smelting soils with varying particle sizes [J]. Ecotoxicology and Environmental Safety, 2022, 233: 113312. DOI: https://doi.org/10.1016/j.ecoenv.2022.113312.

    Article  Google Scholar 

  21. LI **, YAN **ang-yang, WU Ting, et al. Risks and phyto-uptake of micro-nano size particulates bound with potentially toxic metals in Pb-contaminated alkaline soil (NW China): The role of particle size fractions [J]. Chemosphere, 2021, 272: 129508. DOI: https://doi.org/10.1016/j.chemosphere.2020.129508.

    Article  Google Scholar 

  22. GONG C, MA L, CHENG H, et al. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China [J]. Journal of Geochemical Exploration, 2014, 139: 109–114. DOI: https://doi.org/10.1016/j.gexplo.2013.01.002.

    Article  Google Scholar 

  23. PARK H J, PARK H J, YANG H I, et al. Sorption of Pb in chemical and particle-size fractions of soils with different physico-chemical properties [J]. Journal of Soils and Sediments, 2019, 19(1): 310–321. DOI: https://doi.org/10.1007/s11368-018-1978-3.

    Article  Google Scholar 

  24. PARRA S, BRAVO M A, QUIROZ W, et al. Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncavi Valley (Chile) [J]. Chemosphere, 2014, 111: 513–521. DOI: https://doi.org/10.1016/j.chemosphere.2014.03.127.

    Article  Google Scholar 

  25. LUO **ao-san, YU Shen, LI **ang-dong. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health [J]. Environmental Pollution, 2011, 159(5): 1317–1326. DOI: https://doi.org/10.1016/j.envpol.2011.01.013.

    Article  Google Scholar 

  26. ZOU Qi, WEI Hang, CHEN Zhi-liang, et al. Soil particle size fractions affect arsenic (As) release and speciation: Insights into dissolved organic matter and functional genes [J]. Journal of Hazardous Materials, 2023, 443: 130100. DOI: https://doi.org/10.1016/j.jhazmat.2022.130100.

    Article  Google Scholar 

  27. LIU Guan-nan, WANG Juan, LIU Xuan, et al. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions [J]. Geoderma, 2018, 312: 104–113. DOI: https://doi.org/10.1016/j.geoderma.2017.10.013.

    Article  Google Scholar 

  28. LI Qi, DU Hui-hui, CHEN Wen-li, et al. Aging shapes the distribution of copper in soil aggregate size fractions [J]. Environmental Pollution, 2018, 233: 569–576. DOI: https://doi.org/10.1016/j.envpol.2017.10.091.

    Article  Google Scholar 

  29. CSAVINA J, TAYLOR M P, FELIX O, et al. Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: Implications for emission management and human health [J]. Science of the Total Environment, 2014, 493: 750–756. DOI: https://doi.org/10.1016/j.scitotenv.2014.06.031.

    Article  Google Scholar 

  30. ACOSTA J A, CANO A F, AROCENA J M, et al. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain) [J]. Geoderma, 2009, 149(1 - 2): 101–109. DOI: https://doi.org/10.1016/j.geoderma.2008.11.034.

    Article  Google Scholar 

  31. XING Wei-xing, YANG Hao, IPPOLITO J A, et al. Atmospheric deposition of arsenic, cadmium, copper, lead, and zinc near an operating and an abandoned lead smelter [J]. Journal of Environmental Quality, 2020, 49(6): 1667–1678. DOI: https://doi.org/10.1002/jeq2.20151.

    Article  Google Scholar 

  32. ZHAO Peng, XIAO Pei-wen, ADNAN M, et al. Formation and risk assessment of heavy metal contamination in soil profiles of an abandoned lead smelting site in south-central China [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(2): 360–368. DOI: https://doi.org/10.19658/j.issn.1007-2802.2023.42.012. (in Chinese)

    Google Scholar 

  33. TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844–851. DOI: https://doi.org/10.1021/ac50043a017.

    Article  Google Scholar 

  34. SUTHERLAND R A. Lead in grain size fractions of road-deposited sediment [J]. Environmental Pollution, 2003, 121(2): 229–237. DOI: https://doi.org/10.1016/S0269-7491(02)00219-1.

    Article  Google Scholar 

  35. HE Kai-ling, SUN Ze-hang, HU Yuan-an, et al. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations [J]. Environmental Science and Pollution Research, 2017, 24(10): 9387–9398. DOI: https://doi.org/10.1007/s11356-017-8548-x.

    Article  Google Scholar 

  36. XIAO Qing, ZONG Yu-tong, LU Sheng-gao. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China [J]. Ecotoxicology and Environmental Safety, 2015, 120: 377–385. DOI: https://doi.org/10.1016/j.ecoenv.2015.06.019.

    Article  Google Scholar 

  37. FANG Hong-xia, GUI He-rong, YU Hao, et al. Characteristics and source identification of heavy metals in abandoned coal-mining soil: A case study of Zhuxianzhuang coal mine in Huaibei coalfield (Anhui, China) [J]. Human and Ecological Risk Assessment: An International Journal, 2020, 27(3): 708–723. DOI: https://doi.org/10.1080/10807039.2020.1750346.

    Article  Google Scholar 

  38. LI Hui-xin, YUAN Ying-hong, HUANG Qian-ru, et al. Effects of long-term fertilization on labile organic carbon in soil aggregates in red paddy soil [J]. Acta Pedologica Sinica, 2008, 45(2): 259–566. (in Chinese)

    Google Scholar 

  39. LI Hong-xia, JI Hong-bing, SHI Chun-**g, et al. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health [J]. Chemosphere, 2017, 172: 505–515. DOI: https://doi.org/10.1016/j.chemosphere.2017.01.021.

    Article  Google Scholar 

  40. SOBANSKA S, LEDESERT B, DENEELE D, et al. Alteration in soils of slag particles resulting from lead smelting [J]. Surface Geosciences, 2000, 331(4): 271–278. DOI: https://doi.org/10.1016/S1251-8050(00)01418-X.

    Google Scholar 

  41. LANTEIGNE S, SCHINDLER M, MCDONALD A M, et al. Mineralogy and weathering of smelter-derived spherical particles in soils: Implications for the mobility of Ni and Cu in the surficial environment [J]. Water Air and Soil Pollution, 2012, 223(7): 3619–3641. DOI: https://doi.org/10.1007/s11270-012-1135-3.

    Article  Google Scholar 

  42. ETTLER V, JOHAN Z, KRIBEK B, et al. Composition and fate of mine- and smelter-derived particles in soils of humid subtropical and hot semi-arid areas [J]. Science of the Total Environment, 2016, 563: 329–339. DOI: https://doi.org/10.1016/j.scitotenv.2016.04.133.

    Article  Google Scholar 

  43. ZENG Jia-qing, TABELIN C B, GAO Wen-yan, et al. Heterogeneous distributions of heavy metals in the soil-groundwater system empowers the knowledge of the pollution migration at a smelting site [J]. Chemical Engineering Journal, 2023, 454: 140307. DOI: https://doi.org/10.1016/j.cej.2022.140307.

    Article  Google Scholar 

  44. CHENG Ke, WANG Yan, TIAN He-zhong, et al. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China [J]. Environmental Science & Technology, 2015, 49(2): 1206–1214. DOI: https://doi.org/10.1021/es5037332.

    Article  Google Scholar 

  45. KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat [J]. Environmental Pollution, 2007, 145(1): 365–373. DOI: https://doi.org/10.1016/j.envpol.2006.01.037.

    Article  Google Scholar 

  46. KELLEY J A, JAFFE D A, BAKLANOV A, et al. Heavy metals on the Kola Peninsula: Aerosol size distribution [J]. Science of the Total Environment, 1995, 160–161: 135–138. DOI: https://doi.org/10.1016/0048-9697(95)04351-Z.

    Article  Google Scholar 

  47. NRIAGU J O, PACYNA J M. Quantitative assessment of worldwide contamination of air, water, and soils by trace elements [J]. Nature, 1988, 333: 134–139. DOI: https://doi.org/10.1038/333134a0.

    Article  Google Scholar 

  48. BAIG J A, KAZI T G, ARAIN M B, et al. Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods [J]. Journal of Hazardous Materials, 2009, 167(1 – 3): 745–751. DOI: https://doi.org/10.1016/j.jhazmat.2009.01.040.

    Article  Google Scholar 

  49. TAN Wen-feng, LIANG Yu, XU Yun, et al. Structural-controlled formation of nano-particle hematite and their removal performance for heavy metal ions: A review [J]. Chemosphere, 2022, 306: 135540. DOI: https://doi.org/10.1016/j.chemosphere.2022.135540.

    Article  Google Scholar 

  50. YANG Qiong, YANG Zong-fang, JI Jun-feng, et al. Characteristics of mineralogy and heavy metal geochemistry in ferromanganese nodule rich soils with high geochemical background from Guigang, Guangxi [J]. Geoscience, 2021, 35(5): 1450–1458. DOI: https://doi.org/10.19657/j.geoscience.1000-8527.2021.048. (in Chinese)

    Google Scholar 

  51. ZHA Fu-sheng, CHEN Shao-geng, KANG Bo, et al. Synergistic solidification of lead-contaminated soil by magnesium oxide and microorganisms [J]. Chemosphere, 2022, 308: 136422. DOI: https://doi.org/10.1016/j.chemosphere.2022.136422.

    Article  Google Scholar 

  52. WANG **-man, YANG Pei-ling. Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review [J]. Renewable & Sustainable Energy Reviews, 2018, 82: 1969–1978. DOI: https://doi.org/10.1016/j.rser.2017.07.029.

    Article  Google Scholar 

  53. WANG Yun-yan, HE Zi-tong, TANG **-yao, et al. Long-term environmental stability and heavy metals release mechanism of desulfurized gypsum sludge from copper smelter [J]. Journal of Central South University (Science and Technology), 2023, 54(2): 562–576. DOI: https://doi.org/10.11817/j.issn.1672-7207.2023.02.016. (in Chinese)

    Google Scholar 

  54. ZHU **ng-han, YANG **-zhong, YANG Yu-fei, et al. Pyrometallurgical process and multipollutant co-conversion for secondary aluminum dross: A review [J]. Journal of Materials Research and Technology, 2022, 21: 1196–1211. DOI: https://doi.org/10.1016/j.jmrt.2022.09.089.

    Article  Google Scholar 

  55. CHI Yu-xi, SHI Yao, YANG Chun, et al. Migration and environmental risk of heavy metals during mullite preparation by high alumina fly ash based on material flow analysis [J]. Acta Scientiae Circumstantiae, 2023, 43(4): 427–438. DOI: https://doi.org/10.13671/j.hjkxxb.2022.0320. (in Chinese)

    Google Scholar 

  56. LI De-lu, XU Yong, ZHANG **ao-tuan, et al. Water quality, natural chemical weathering and ecological risk assessment of the contaminated area of vanadium ore in Yinhua River, China: Evidence from major ions and trace elements [J]. Acta Geochimica, 2021, 41(1): 84–99. DOI: https://doi.org/10.1007/s11631-021-00509-8.

    Article  Google Scholar 

  57. WANG Li, JI Bin, HU Yue-hua, et al. A review on in situ phytoremediation of mine tailings [J]. Chemosphere, 2017, 184: 594–600. DOI: https://doi.org/10.1016/j.chemosphere.2017.06.025.

    Article  Google Scholar 

  58. MINASNY B, MCBRATNEY A B. The Australian soil texture boomerang: a comparison of the Australian and USDA/FAO soil particle-size classification systems [J]. Australian Journal of Soil Research, 2001, 39(6): 1443–1451. DOI: https://doi.org/10.1071/SR00065.

    Article  Google Scholar 

  59. FU Yan-hong, LI Zhen, ZHOU An-ning, et al. Evaluation of coal component liberation upon impact breakage by MLA [J]. Fuel, 2019, 258: 116136. DOI: https://doi.org/10.1016/j.fuel.2019.116136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHAO Peng provided the concept, conducted the experiments and data curation, and wrote the first draft of manuscript; ZHAO Peng, Muhammad ADNAN, XIAO Pei-wen, YANG Xue-feng, WANG Hai-yan, and XIAO Bao-hua contributed to investigation, formal analysis, writing-review and editing; XIAO Bao-hua and XUE Sheng-guo provided funding and resources.

Corresponding author

Correspondence to Bao-hua **ao  (肖保华).

Ethics declarations

ZHAO Peng, Muhammad ADNAN, XIAO Pei-wen, YANG Xue-feng, WANG Hai-yan, XIAO Bao-hua, and XUE Sheng-guo declare that they have no conflict of interest.

Additional information

Foundation item: Project(2019YFC1803601) supported by the National Key Research and Development Program of China; Project(2022) supported by the Complementary Fund from the Guizhou Provincial Department of Science and Technology, China

Supplementary materials

Please scan the QR code or visit the URL link to get the supporting information https://qr.csupress.com.cn/Public/ResourceList/Detail/51604

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Adnan, M., **ao, Pw. et al. Characterization of soil heavy metals at an abandoned smelting site based on particle size fraction and its implications for remediation strategy. J. Cent. South Univ. 31, 1076–1091 (2024). https://doi.org/10.1007/s11771-024-5646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5646-z

Key words

关键词

Navigation